IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223030104.html
   My bibliography  Save this article

Effect of MgCl2 on CO2 sequestration as hydrates in marine environment: A thermodynamic and kinetic investigation with morphology insights

Author

Listed:
  • Zeng, Siyu
  • Yin, Zhenyuan
  • Ren, Junjie
  • Bhawangirkar, Dnyaneshwar R.
  • Huang, Li
  • Linga, Praveen

Abstract

Oceanic hydrate-based CO2 sequestration (HBCS) holds great promise for achieving carbon neutrality. However, the presence of inorganic salts, particularly MgCl2 besides NaCl, in seawater can significantly impact the formation rate and the stability of CO2 hydrate. In this study, experimental investigations were conducted to examine the thermodynamics, kinetics, and the resulting morphological features of CO2 hydrate in the presence of MgCl2, covering mass fractions ranging from 0 to 5.0 wt%. The experimental findings reveal that MgCl2 exerts a thermodynamic inhibitory effect with its inhibitory capacity increasing with higher mass fractions. The solubility model of CO2 in MgCl2 solution was modified, demonstrating a gradual weakening of CO2 solubility as MgCl2 mass fraction increases. Additionally, the growth kinetics of CO2 hydrate decreases with increasing MgCl2 mass fraction. Regarding CO2 hydrate morphology, it was observed that at low mass fractions of MgCl2 (<1.0 wt%), a dense hydrate film rapidly formed at the gas-liquid interface after CO2 hydrate nucleation, hindering the further conversion of CO2 into hydrate. Conversely, at higher mass fractions (>3.0 wt%), CO2 hydrate exhibits a more porous and slurry-like structure, facilitating more gas-liquid contact and mass transfer, thereby enhancing the conversion of CO2 into hydrate. During hydrate dissociation, a salt-removal effect associated with CO2 hydrate formation was observed, leading to the accumulation of concentrated electrolyte (MgCl2) and facilitating CO2 hydrate dissociation. These findings have implications for understanding the CO2 hydrate formation and dissociation in the presence of MgCl2 relevant in the subsea environment and can contribute to the development of effective hydrate-based CO2 sequestration strategies.

Suggested Citation

  • Zeng, Siyu & Yin, Zhenyuan & Ren, Junjie & Bhawangirkar, Dnyaneshwar R. & Huang, Li & Linga, Praveen, 2024. "Effect of MgCl2 on CO2 sequestration as hydrates in marine environment: A thermodynamic and kinetic investigation with morphology insights," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030104
    DOI: 10.1016/j.energy.2023.129616
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030104
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chong, Zheng Rong & Koh, Jun Wee & Linga, Praveen, 2017. "Effect of KCl and MgCl2 on the kinetics of methane hydrate formation and dissociation in sandy sediments," Energy, Elsevier, vol. 137(C), pages 518-529.
    2. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    3. Pandey, Gaurav & Poothia, Tejaswa & Kumar, Asheesh, 2022. "Hydrate based carbon capture and sequestration (HBCCS): An innovative approach towards decarbonization," Applied Energy, Elsevier, vol. 326(C).
    4. Ren, Junjie & Zeng, Siyu & Chen, Daoyi & Yang, Mingjun & Linga, Praveen & Yin, Zhenyuan, 2023. "Roles of montmorillonite clay on the kinetics and morphology of CO2 hydrate in hydrate-based CO2 sequestration1," Applied Energy, Elsevier, vol. 340(C).
    5. Sa, Jeong-Hoon & Kwak, Gye-Hoon & Lee, Bo Ram & Han, Kunwoo & Cho, Seong Jun & Lee, Ju Dong & Lee, Kun-Hong, 2017. "Phase equilibria and characterization of CO2 and SF6 binary hydrates for CO2 sequestration," Energy, Elsevier, vol. 126(C), pages 306-311.
    6. Dan Tong & Qiang Zhang & Yixuan Zheng & Ken Caldeira & Christine Shearer & Chaopeng Hong & Yue Qin & Steven J. Davis, 2019. "Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target," Nature, Nature, vol. 572(7769), pages 373-377, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Joonseop & Lee, Dongyoung & Seo, Yongwon, 2021. "Experimental investigation of the exact role of large-molecule guest substances (LMGSs) in determining phase equilibria and structures of natural gas hydrates," Energy, Elsevier, vol. 215(PB).
    2. Shi, Lingli & He, Yong & Lu, Jingsheng & Liang, Deqing, 2020. "Effect of dodecyl dimethyl benzyl ammonium chloride on CH4 hydrate growth and agglomeration in oil-water systems," Energy, Elsevier, vol. 212(C).
    3. Li, Bing & Sun, Youhong & Jiang, Shuhui & Shen, Yifeng & Qi, Yun & Zhang, Guobiao, 2024. "Investigating CO2–N2 phase behavior for enhanced hydrate-based CO2 sequestration," Energy, Elsevier, vol. 289(C).
    4. Liu, Fa-Ping & Li, Ai-Rong & Wang, Jie & Luo, Ze-Dong, 2021. "Iron-based ionic liquid ([BMIM][FeCl4]) as a promoter of CO2 hydrate nucleation and growth," Energy, Elsevier, vol. 214(C).
    5. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
    6. Liu, Yanzhen & Qi, Huiping & Liang, Huiyong & Yang, Lei & Lv, Xin & Qiao, Fen & Wang, Junfeng & Liu, Yanbo & Li, Qingping & Zhao, Jiafei, 2024. "Influence mechanism of interfacial organic matter and salt system on carbon dioxide hydrate nucleation in porous media," Energy, Elsevier, vol. 290(C).
    7. Qureshi, M Fahed & Khandelwal, Himanshu & Usadi, Adam & Barckholtz, Timothy A. & Mhadeshwar, Ashish B. & Linga, Praveen, 2022. "CO2 hydrate stability in oceanic sediments under brine conditions," Energy, Elsevier, vol. 256(C).
    8. Veluswamy, Hari Prakash & Kumar, Asheesh & Kumar, Rajnish & Linga, Praveen, 2019. "Investigation of the kinetics of mixed methane hydrate formation kinetics in saline and seawater," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Dhamu, Vikas & Mengqi, Xiao & Qureshi, M Fahed & Yin, Zhenyuan & Jana, Amiya K. & Linga, Praveen, 2024. "Evaluating CO2 hydrate kinetics in multi-layered sediments using experimental and machine learning approach: Applicable to CO2 sequestration," Energy, Elsevier, vol. 290(C).
    10. Sa, Jeong-Hoon & Sum, Amadeu K., 2019. "Promoting gas hydrate formation with ice-nucleating additives for hydrate-based applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Yan Li & Alberto Maria Gambelli & Yizhi Rao & Xuejian Liu & Zhenyuan Yin & Federico Rossi, 2024. "Unraveling the Role of Amino Acid L -Tryptophan Concentration in Enhancing CO 2 Hydrate Kinetics," Energies, MDPI, vol. 17(15), pages 1-15, July.
    12. Bojana Škrbić & Željko Đurišić, 2023. "Novel Planning Methodology for Spatially Optimized RES Development Which Minimizes Flexibility Requirements for Their Integration into the Power System," Energies, MDPI, vol. 16(7), pages 1-34, April.
    13. Lei, Gang & Tang, Jiadi & Zhang, Ling & Wu, Qi & Li, Jun, 2024. "Effective thermal conductivity for hydrate-bearing sediments under stress and local thermal stimulation conditions: A novel analytical model," Energy, Elsevier, vol. 288(C).
    14. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    15. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    16. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    17. Zhang, Zhuo & Zhao, Yongliang & Cai, Haiya & Ajaz, Tahseen, 2023. "Influence of renewable energy infrastructure, Chinese outward FDI, and technical efficiency on ecological sustainability in belt and road node economies," Renewable Energy, Elsevier, vol. 205(C), pages 608-616.
    18. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Chen, Chang & Zhang, Yu & Li, Xiaosen & Gao, Fei & Chen, Yuru & Chen, Zhaoyang, 2024. "Experimental investigation into gas production from methane hydrate in sediments with different contents of illite clay by depressurization," Energy, Elsevier, vol. 296(C).
    20. Maria Filomena Loreto & Umberta Tinivella & Flavio Accaino & Michela Giustiniani, 2010. "Offshore Antarctic Peninsula Gas Hydrate Reservoir Characterization by Geophysical Data Analysis," Energies, MDPI, vol. 4(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.