IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223028578.html
   My bibliography  Save this article

Pelletization property analysis of raw and torrefied corn stalks for industrial application to achieve agricultural waste conversion

Author

Listed:
  • Zhang, Congyu
  • Chen, Wei-Hsin
  • Ho, Shih-Hsin
  • Park, Young-Kwon
  • Wang, Chengyu
  • Zhang, Ying

Abstract

Agricultural waste conversion is of great concern to achieve modernization and industrial development and thus leads to a greener route for a sustainable and circular economy. The treatment of corn stalk for pellet production to realize industrial application is implemented, which is conducive to upgrading fuel properties with better storage and transportation characteristics. The obtained results indicate that torrefaction operation is helpful for pellet density enhancement, with a value of up to larger than 0.74 g cm−3. However, the wear strength and hardness are not good enough compared to raw corn stalk, with values of 4.5–7.5 % and 88 kN–92 kN, respectively. A longer compression duration contributes to a greater work condition and higher relative HHV, which is conducive to energy efficiency improvement. To further evaluate the hygroscopicity and moisture resistance capacity of pelletized corn stalk for fuel properties evaluation, the equilibrium moisture content and contact angle reflect that the enhancement of pressure and compression duration are beneficial for moisture resistance capacity improvement, with the values of less than 3.5 % and higher than 130°. When considering the fuel properties and pelletization cost, compromising on operation conditions should be adopted for optimal operation.

Suggested Citation

  • Zhang, Congyu & Chen, Wei-Hsin & Ho, Shih-Hsin & Park, Young-Kwon & Wang, Chengyu & Zhang, Ying, 2023. "Pelletization property analysis of raw and torrefied corn stalks for industrial application to achieve agricultural waste conversion," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028578
    DOI: 10.1016/j.energy.2023.129463
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223028578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129463?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Congyu & Chen, Wei-Hsin & Zhang, Ying & Ho, Shih-Hsin, 2023. "Influence of microorganisms on the variation of raw and oxidatively torrefied microalgal biomass properties," Energy, Elsevier, vol. 276(C).
    2. Elbl, Patrik & Sitek, Tomáš & Lachman, Jakub & Lisý, Martin & Baláš, Marek & Pospíšil, Jiří, 2022. "Sewage sludge and wood sawdust co-firing: Gaseous emissions and particulate matter size distribution," Energy, Elsevier, vol. 256(C).
    3. Lisowski, Aleksander & Olendzki, Dariusz & Świętochowski, Adam & Dąbrowska, Magdalena & Mieszkalski, Leszek & Ostrowska-Ligęza, Ewa & Stasiak, Mateusz & Klonowski, Jacek & Piątek, Michał, 2019. "Spent coffee grounds compaction process: Its effects on the strength properties of biofuel pellets," Renewable Energy, Elsevier, vol. 142(C), pages 173-183.
    4. Ngoc-Dan Cao, Thanh & Mukhtar, Hussnain & Yu, Chang-Ping & Bui, Xuan-Thanh & Pan, Shu-Yuan, 2022. "Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Zhang, Congyu & Ho, Shih-Hsin & Chen, Wei-Hsin & Xie, Youping & Liu, Zhenquan & Chang, Jo-Shu, 2018. "Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index," Applied Energy, Elsevier, vol. 220(C), pages 598-604.
    6. Pradhan, Priyabrata & Gadkari, Prabodh & Mahajani, Sanjay M. & Arora, Amit, 2019. "A conceptual framework and techno-economic analysis of a pelletization-gasification based bioenergy system," Applied Energy, Elsevier, vol. 249(C), pages 1-13.
    7. Ma, Jiao & Feng, Shuo & Shen, Xiaoqian & Zhang, Zhikun & Wang, Zhuozhi & Kong, Wenwen & Yuan, Peng & Shen, Boxiong & Mu, Lan, 2021. "Integration of the pelletization and combustion of biodried products derived from municipal organic wastes: The influences of compression temperature and pressure," Energy, Elsevier, vol. 219(C).
    8. Lee, Kuan-Ting & Cheng, Ching-Lin & Lee, Da-Sheng & Chen, Wei-Hsin & Vo, Dai-Viet N. & Ding, Lu & Lam, Su Shiung, 2022. "Spent coffee grounds biochar from torrefaction as a potential adsorbent for spilled diesel oil recovery and as an alternative fuel," Energy, Elsevier, vol. 239(PE).
    9. Chen, Wei-Hsin & Lin, Bo-Jhih & Colin, Baptiste & Chang, Jo-Shu & Pétrissans, Anélie & Bi, Xiaotao & Pétrissans, Mathieu, 2018. "Hygroscopic transformation of woody biomass torrefaction for carbon storage," Applied Energy, Elsevier, vol. 231(C), pages 768-776.
    10. Yan, Beibei & Jiao, Liguo & Li, Jian & Zhu, Xiaochao & Ahmed, Sarwaich & Chen, Guanyi, 2021. "Investigation on microwave torrefaction: Parametric influence, TG-MS-FTIR analysis, and gasification performance," Energy, Elsevier, vol. 220(C).
    11. Riva, Lorenzo & Nielsen, Henrik Kofoed & Skreiberg, Øyvind & Wang, Liang & Bartocci, Pietro & Barbanera, Marco & Bidini, Gianni & Fantozzi, Francesco, 2019. "Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke," Applied Energy, Elsevier, vol. 256(C).
    12. Ubando, Aristotle T. & Rivera, Diana Rose T. & Chen, Wei-Hsin & Culaba, Alvin B., 2020. "Life cycle assessment of torrefied microalgal biomass using torrefaction severity index with the consideration of up-scaling production," Renewable Energy, Elsevier, vol. 162(C), pages 1113-1124.
    13. San Miguel, G. & Sánchez, F. & Pérez, A. & Velasco, L., 2022. "One-step torrefaction and densification of woody and herbaceous biomass feedstocks," Renewable Energy, Elsevier, vol. 195(C), pages 825-840.
    14. Manouchehrinejad, Maryam & Bilek, E.M. Ted & Mani, Sudhagar, 2021. "Techno-economic analysis of integrated torrefaction and pelletization systems to produce torrefied wood pellets," Renewable Energy, Elsevier, vol. 178(C), pages 483-493.
    15. González-Arias, J. & Gómez, X. & González-Castaño, M. & Sánchez, M.E. & Rosas, J.G. & Cara-Jiménez, J., 2022. "Insights into the product quality and energy requirements for solid biofuel production: A comparison of hydrothermal carbonization, pyrolysis and torrefaction of olive tree pruning," Energy, Elsevier, vol. 238(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Zhang, Congyu & Zhan, Yong & Chen, Wei-Hsin & Ho, Shih-Hsin & Park, Young-Kwon & Culaba, Alvin B. & Zhang, Ying, 2024. "Correlations between different fuel property indicators and carbonization degree of oxidatively torrefied microalgal biomass," Energy, Elsevier, vol. 286(C).
    3. Zhang, Congyu & Chen, Wei-Hsin & Ho, Shih-Hsin, 2022. "Elemental loss, enrichment, transformation and life cycle assessment of torrefied corncob," Energy, Elsevier, vol. 242(C).
    4. Zhang, Congyu & Chen, Wei-Hsin & Zhang, Ying & Ho, Shih-Hsin, 2023. "Influence of microorganisms on the variation of raw and oxidatively torrefied microalgal biomass properties," Energy, Elsevier, vol. 276(C).
    5. Riaz, Sajid & Oluwoye, Ibukun & Al-Abdeli, Yasir M., 2022. "Oxidative torrefaction of densified woody biomass: Performance, combustion kinetics and thermodynamics," Renewable Energy, Elsevier, vol. 199(C), pages 908-918.
    6. Ras Izzati Ismail & Chu Yee Khor & Alina Rahayu Mohamed, 2023. "Pelletization Temperature and Pressure Effects on the Mechanical Properties of Khaya senegalensis Biomass Energy Pellets," Sustainability, MDPI, vol. 15(9), pages 1-12, May.
    7. Safar, Michal & Lin, Bo-Jhih & Chen, Wei-Hsin & Langauer, David & Chang, Jo-Shu & Raclavska, H. & Pétrissans, Anélie & Rousset, Patrick & Pétrissans, Mathieu, 2019. "Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction," Applied Energy, Elsevier, vol. 235(C), pages 346-355.
    8. Antonios Nazos & Dorothea Politi & Georgios Giakoumakis & Dimitrios Sidiras, 2022. "Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review," Energies, MDPI, vol. 15(23), pages 1-35, November.
    9. Gan, Yong Yang & Ong, Hwai Chyuan & Ling, Tau Chuan & Chen, Wei-Hsin & Chong, Cheng Tung, 2019. "Torrefaction of de-oiled Jatropha seed kernel biomass for solid fuel production," Energy, Elsevier, vol. 170(C), pages 367-374.
    10. Arriola, Emmanuel & Chen, Wei-Hsin & Chih, Yi-Kai & De Luna, Mark Daniel & Show, Pau Loke, 2020. "Impact of post-torrefaction process on biochar formation from wood pellets and self-heating phenomena for production safety," Energy, Elsevier, vol. 207(C).
    11. Zhang, Congyu & Chen, Wei-Hsin & Saravanakumar, Ayyadurai & Lin, Kun-Yi Andrew & Zhang, Ying, 2024. "Comparison of torrefaction and hydrothermal carbonization of high-moisture microalgal feedstock," Renewable Energy, Elsevier, vol. 225(C).
    12. Zhang, Congyu & Yang, Wu & Chen, Wei-Hsin & Ho, Shih-Hsin & Pétrissans, Anelie & Pétrissans, Mathieu, 2022. "Effect of torrefaction on the structure and reactivity of rice straw as well as life cycle assessment of torrefaction process," Energy, Elsevier, vol. 240(C).
    13. Eleonora Bottani & Letizia Tebaldi & Andrea Volpi, 2019. "The Role of ICT in Supporting Spent Coffee Grounds Collection and Valorization: A Quantitative Assessment," Sustainability, MDPI, vol. 11(23), pages 1-44, November.
    14. da Silva, Jean Constantino Gomes & Pereira, Jefferson Leque Claudio & Andersen, Silvia Layara Floriani & Moreira, Regina de Fatima Peralta Muniz & José, Humberto Jorge, 2020. "Torrefaction of ponkan peel waste in tubular fixed-bed reactor: In-depth bioenergetic evaluation of torrefaction products," Energy, Elsevier, vol. 210(C).
    15. Silveira, Edgar A. & Macedo, Lucélia A. & Rousset, Patrick & Candelier, Kevin & Galvão, Luiz Gustavo O. & Chaves, Bruno S. & Commandré, Jean-Michel, 2022. "A potassium responsive numerical path to model catalytic torrefaction kinetics," Energy, Elsevier, vol. 239(PB).
    16. Catarina Viegas & Catarina Nobre & Ricardo Correia & Luísa Gouveia & Margarida Gonçalves, 2021. "Optimization of Biochar Production by Co-Torrefaction of Microalgae and Lignocellulosic Biomass Using Response Surface Methodology," Energies, MDPI, vol. 14(21), pages 1-23, November.
    17. Chen, Wei-Hsin & Aniza, Ria & Arpia, Arjay A. & Lo, Hsiu-Ju & Hoang, Anh Tuan & Goodarzi, Vahabodin & Gao, Jianbing, 2022. "A comparative analysis of biomass torrefaction severity index prediction from machine learning," Applied Energy, Elsevier, vol. 324(C).
    18. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    19. Dan Liu & Da Teng & Yan Zhu & Xingde Wang & Hanyang Wang, 2023. "Optimization of Process Parameters for Pellet Production from Corn Stalk Rinds Using Box–Behnken Design," Energies, MDPI, vol. 16(12), pages 1-20, June.
    20. Czekała, Wojciech & Łukomska, Aleksandra & Pulka, Jakub & Bojarski, Wiktor & Pochwatka, Patrycja & Kowalczyk-Juśko, Alina & Oniszczuk, Anna & Dach, Jacek, 2023. "Waste-to-energy: Biogas potential of waste from coffee production and consumption," Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.