IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipes036054422102716x.html
   My bibliography  Save this article

Spent coffee grounds biochar from torrefaction as a potential adsorbent for spilled diesel oil recovery and as an alternative fuel

Author

Listed:
  • Lee, Kuan-Ting
  • Cheng, Ching-Lin
  • Lee, Da-Sheng
  • Chen, Wei-Hsin
  • Vo, Dai-Viet N.
  • Ding, Lu
  • Lam, Su Shiung

Abstract

A new approach using torrefied spent coffee grounds (TSCG) as a bioadsorbent is presented for marine oil spill recovery. The adsorbent after diesel adsorption is referred to as “oilchar”. The torrefaction of spent coffee grounds (SCG) is performed at 200, 250, and 300 °C where the solid yields are 95%, 80%, and 62%, respectively. The specific surface area, hydrophobicity, thermal stability, diesel adsorption capacity of SCG increases with increasing torrefaction temperature. SCG torrefied at 300 °C (300-TSCG) can intensify its specific surface area, contact angle, crystallinity, diesel adsorption capacity by factors of 7.6 folds, 10.3%, 35%, and 1.47 times, respectively. The diesel adsorption capacity of 300-TSCG is 1.36 times that of commercial activated carbon. The higher heating value of 300-TSCG is 30.32 MJ kg−1, accounting for a 45.1% improvement compared with that of untorrefied SCG. After adsorbing diesel, the HHV of the oilchar from 300-TSCG is 1.23 times that of SCG-oilchar, while the ignition temperature of 300-TSCG decreases from 301 to 157 °C. Overall, TSCG is a promising material to adsorb spilled diesel oil for environmental protection, and the resultant oilchar is a potential alternative fuel for thermal power plants and steel mills, thereby achieving waste reuse and circular economy.

Suggested Citation

  • Lee, Kuan-Ting & Cheng, Ching-Lin & Lee, Da-Sheng & Chen, Wei-Hsin & Vo, Dai-Viet N. & Ding, Lu & Lam, Su Shiung, 2022. "Spent coffee grounds biochar from torrefaction as a potential adsorbent for spilled diesel oil recovery and as an alternative fuel," Energy, Elsevier, vol. 239(PE).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pe:s036054422102716x
    DOI: 10.1016/j.energy.2021.122467
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422102716X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Sheng & Qian, Yu & Wang, Yifan & Yang, Siyu, 2017. "A novel cascade absorption heat transformer process using low grade waste heat and its application to coal to synthetic natural gas," Applied Energy, Elsevier, vol. 202(C), pages 42-52.
    2. Ayotamuno, M.J. & Kogbara, R.B. & Ogaji, S.O.T. & Probert, S.D., 2006. "Petroleum contaminated ground-water: Remediation using activated carbon," Applied Energy, Elsevier, vol. 83(11), pages 1258-1264, November.
    3. Yang, Sheng & Yang, Siyu & Wang, Yifan & Qian, Yu, 2017. "Low grade waste heat recovery with a novel cascade absorption heat transformer," Energy, Elsevier, vol. 130(C), pages 461-472.
    4. Lin, Bo-Jhih & Chen, Wei-Hsin & Budzianowski, Wojciech M. & Hsieh, Cheng-Ting & Lin, Pei-Hsun, 2016. "Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers," Applied Energy, Elsevier, vol. 178(C), pages 746-757.
    5. Chen, Wei-Hsin & Lin, Bo-Jhih & Colin, Baptiste & Chang, Jo-Shu & Pétrissans, Anélie & Bi, Xiaotao & Pétrissans, Mathieu, 2018. "Hygroscopic transformation of woody biomass torrefaction for carbon storage," Applied Energy, Elsevier, vol. 231(C), pages 768-776.
    6. Lu, Jau-Jang & Chen, Wei-Hsin, 2015. "Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis," Applied Energy, Elsevier, vol. 160(C), pages 49-57.
    7. Collard, François-Xavier & Blin, Joël, 2014. "A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 594-608.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Congyu & Chen, Wei-Hsin & Zhang, Ying & Ho, Shih-Hsin, 2023. "Influence of microorganisms on the variation of raw and oxidatively torrefied microalgal biomass properties," Energy, Elsevier, vol. 276(C).
    2. Hellem Victoria Ribeiro dos Santos & Paulo Sérgio Scalize & Francisco Javier Cuba Teran & Renata Medici Frayne Cuba, 2023. "Fluoride Removal from Aqueous Medium Using Biochar Produced from Coffee Ground," Resources, MDPI, vol. 12(7), pages 1-20, July.
    3. Zhang, Congyu & Zhan, Yong & Chen, Wei-Hsin & Ho, Shih-Hsin & Park, Young-Kwon & Culaba, Alvin B. & Zhang, Ying, 2024. "Correlations between different fuel property indicators and carbonization degree of oxidatively torrefied microalgal biomass," Energy, Elsevier, vol. 286(C).
    4. Wang, Chen & Hu, Haowei & Zhang, Hao & Ji, Jie & Wang, Zhigang, 2022. "Experimental study of the horizontal subsurface flow trajectory and dynamic external radiation of flame spread over diesel," Energy, Elsevier, vol. 260(C).
    5. Zhang, Congyu & Chen, Wei-Hsin & Ho, Shih-Hsin & Park, Young-Kwon & Wang, Chengyu & Zhang, Ying, 2023. "Pelletization property analysis of raw and torrefied corn stalks for industrial application to achieve agricultural waste conversion," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Yee-Ting & Hong, Sihui & Chien, Liang-Han & Lin, Chih-Jer & Yang, An-Shik, 2020. "Heat transfer and pressure drop of film condensation in a horizontal minitube for HFO1234yf refrigerant," Applied Energy, Elsevier, vol. 274(C).
    2. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    3. Riaz, Sajid & Oluwoye, Ibukun & Al-Abdeli, Yasir M., 2022. "Oxidative torrefaction of densified woody biomass: Performance, combustion kinetics and thermodynamics," Renewable Energy, Elsevier, vol. 199(C), pages 908-918.
    4. Mu, Chenlu & Ding, Tao & Qu, Ming & Zhou, Quan & Li, Fangxing & Shahidehpour, Mohammad, 2020. "Decentralized optimization operation for the multiple integrated energy systems with energy cascade utilization," Applied Energy, Elsevier, vol. 280(C).
    5. Safar, Michal & Lin, Bo-Jhih & Chen, Wei-Hsin & Langauer, David & Chang, Jo-Shu & Raclavska, H. & Pétrissans, Anélie & Rousset, Patrick & Pétrissans, Mathieu, 2019. "Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction," Applied Energy, Elsevier, vol. 235(C), pages 346-355.
    6. Xu, Qingyu & Lu, Ding & Chen, Gaofei & Guo, Hao & Dong, Xueqiang & Zhao, Yanxing & Shen, Jun & Gong, Maoqiong, 2019. "Experimental study on an absorption refrigeration system driven by temperature-distributed heat sources," Energy, Elsevier, vol. 170(C), pages 471-479.
    7. da Silva, Jean Constantino Gomes & Pereira, Jefferson Leque Claudio & Andersen, Silvia Layara Floriani & Moreira, Regina de Fatima Peralta Muniz & José, Humberto Jorge, 2020. "Torrefaction of ponkan peel waste in tubular fixed-bed reactor: In-depth bioenergetic evaluation of torrefaction products," Energy, Elsevier, vol. 210(C).
    8. Chen, Wei-Hsin & Lin, Yu-Ying & Liu, Hsuah-Cheng & Chen, Teng-Chien & Hung, Chun-Hung & Chen, Chi-Hui & Ong, Hwai Chyuan, 2019. "A comprehensive analysis of food waste derived liquefaction bio-oil properties for industrial application," Applied Energy, Elsevier, vol. 237(C), pages 283-291.
    9. Chen, Wei-Hsin & Lin, Yu-Ying & Liu, Hsuan-Cheng & Baroutian, Saeid, 2020. "Optimization of food waste hydrothermal liquefaction by a two-step process in association with a double analysis," Energy, Elsevier, vol. 199(C).
    10. Lin, Bo-Jhih & Chen, Wei-Hsin & Hsieh, Tzu-Hsien & Ong, Hwai Chyuan & Show, Pau Loke & Naqvi, Salman Raza, 2019. "Oxidative reaction interaction and synergistic index of emulsified pyrolysis bio-oil/diesel fuels," Renewable Energy, Elsevier, vol. 136(C), pages 223-234.
    11. Yang, Fusheng & Wu, Zhen & Liu, Shengzhe & Zhang, Yang & Wang, Geoff & Zhang, Zaoxiao & Wang, Yuqi, 2018. "Theoretical formulation and performance analysis of a novel hydride heat Pump(HHP) integrated heat recovery system," Energy, Elsevier, vol. 163(C), pages 208-220.
    12. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    13. Liu, Zijian & Lu, Ding & Tao, Shen & Chen, Rundong & Gong, Maoqiong, 2024. "Experimental study on using 85 °C low-grade heat to generate <120 °C steam by a temperature-distributed absorption heat transformer," Energy, Elsevier, vol. 299(C).
    14. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    15. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    16. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    17. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    18. Kluska, Jacek & Turzyński, Tomasz & Ochnio, Mateusz & Kardaś, Dariusz, 2020. "Characteristics of ash formation in the process of combustion of pelletised leather tannery waste and hardwood pellets," Renewable Energy, Elsevier, vol. 149(C), pages 1246-1253.
    19. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    20. Abdulyekeen, Kabir Abogunde & Daud, Wan Mohd Ashri Wan & Patah, Muhamad Fazly Abdul, 2024. "Torrefaction of wood and garden wastes from municipal solid waste to enhanced solid fuel using helical screw rotation-induced fluidised bed reactor: Effect of particle size, helical screw speed and te," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pe:s036054422102716x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.