IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223021667.html
   My bibliography  Save this article

Greenhouse gas emission reduction potential, energy and exergy analysis of combined microwave-convective dryer

Author

Listed:
  • Darvishi, Hosain
  • Khodaei, Jalal
  • Behroozi-Khazaei, Nasser
  • Salami, Payman
  • Akhijahani, Hadi Samimi

Abstract

About 12–25% of the energy used in the food processing industries in the drying section and various technologies such as the combination of microwave and convective methods has been applied to reduce greenhouse gases and environmental pollution effects. In this study, the effects of microwave power (200–500 W) and drying air temperatures (30–55 °C) on energy and exergy aspects, GHG emissions (CO2, SO2, and NOx), and GHG reduction potential were evaluated and optimized using genetic algorithm approach in a combined microwave-convective drying process. The results showed that higher drying air temperature caused an increasing energy loss and decreasing exergy efficiency. The energy and exergy efficiencies were found to be in the range of 5.20–23.50% and 5.12–9.19%, respectively. The exergy improvement potential and GHG emissions decreased with increasing microwave power and decreasing drying air temperature. The total GHG emissions varied between 2002.4 and 7627.4 (g/kg water). Optimization of the drying parameters for the given constraints resulted in 498 W and 30.2 °C. The GHG emissions can be reduced 14.1%–28.6% with a recovery of exergy loss. Therefore, it can be concluded that heat recovery mechanisms are needed to reduce exergy waste and GHG emissions.

Suggested Citation

  • Darvishi, Hosain & Khodaei, Jalal & Behroozi-Khazaei, Nasser & Salami, Payman & Akhijahani, Hadi Samimi, 2023. "Greenhouse gas emission reduction potential, energy and exergy analysis of combined microwave-convective dryer," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223021667
    DOI: 10.1016/j.energy.2023.128772
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223021667
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128772?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Motevali, Ali & Minaei, Saeid & Khoshtaghaza, Mohammad Hadi & Amirnejat, Hamed, 2011. "Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices," Energy, Elsevier, vol. 36(11), pages 6433-6441.
    2. Sarker, Md. Sazzat Hossain & Ibrahim, Mohd Nordin & Abdul Aziz, Norashikin & Punan, Mohd Salleh, 2015. "Energy and exergy analysis of industrial fluidized bed drying of paddy," Energy, Elsevier, vol. 84(C), pages 131-138.
    3. Luis Miguel Calvo & Rosario Domingo, 2017. "CO 2 Emissions Reduction and Energy Efficiency Improvements in Paper Making Drying Process Control by Sensors," Sustainability, MDPI, vol. 9(4), pages 1-17, March.
    4. Nazghelichi, Tayyeb & Kianmehr, Mohammad Hossein & Aghbashlo, Mortaza, 2010. "Thermodynamic analysis of fluidized bed drying of carrot cubes," Energy, Elsevier, vol. 35(12), pages 4679-4684.
    5. El Hallaoui, Zhor & El Hamdani, Fayrouz & Vaudreuil, Sébastien & Bounahmidi, Tijani & Abderafi, Souad, 2022. "Identifying the optimum operating conditions for the integration of a solar loop to power an industrial flash dryer: Combining an exergy analysis with genetic algorithm optimization," Renewable Energy, Elsevier, vol. 191(C), pages 828-841.
    6. Nazari, S. & Shahhoseini, O. & Sohrabi-Kashani, A. & Davari, S. & Paydar, R. & Delavar-Moghadam, Z., 2010. "Experimental determination and analysis of CO2, SO2 and NOx emission factors in Iran’s thermal power plants," Energy, Elsevier, vol. 35(7), pages 2992-2998.
    7. Singh, Shobhana & Kumar, Subodh, 2013. "Solar drying for different test conditions: Proposed framework for estimation of specific energy consumption and CO2 emissions mitigation," Energy, Elsevier, vol. 51(C), pages 27-36.
    8. Darvishi, Hosain & Azadbakht, Mohsen & Noralahi, Bashir, 2018. "Experimental performance of mushroom fluidized-bed drying: Effect of osmotic pretreatment and air recirculation," Renewable Energy, Elsevier, vol. 120(C), pages 201-208.
    9. Ranjbaran, M. & Zare, D., 2013. "Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans," Energy, Elsevier, vol. 59(C), pages 484-493.
    10. Yogendrasasidhar, D. & Pydi Setty, Y., 2018. "Drying kinetics, exergy and energy analyses of Kodo millet grains and Fenugreek seeds using wall heated fluidized bed dryer," Energy, Elsevier, vol. 151(C), pages 799-811.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zi-Liang & Zielinska, Magdalena & Yang, Xu-Hai & Yu, Xian-Long & Chen, Chang & Wang, Hui & Wang, Jun & Pan, Zhongli & Xiao, Hong-Wei, 2021. "Moisturizing strategy for enhanced convective drying of mushroom slices," Renewable Energy, Elsevier, vol. 172(C), pages 728-739.
    2. Di Marco, Paolo & Frigo, Stefano & Gabbrielli, Roberto & Pecchia, Stefano, 2016. "Mathematical modelling and energy performance assessment of air impingement drying systems for the production of tissue paper," Energy, Elsevier, vol. 114(C), pages 201-213.
    3. Beigi, Mohsen & Tohidi, Mojtaba & Torki-Harchegani, Mehdi, 2017. "Exergetic analysis of deep-bed drying of rough rice in a convective dryer," Energy, Elsevier, vol. 140(P1), pages 374-382.
    4. Sivakumar, R. & Saravanan, R. & Elaya Perumal, A. & Iniyan, S., 2016. "Fluidized bed drying of some agro products – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 280-301.
    5. Darvishi, Hosain & Azadbakht, Mohsen & Noralahi, Bashir, 2018. "Experimental performance of mushroom fluidized-bed drying: Effect of osmotic pretreatment and air recirculation," Renewable Energy, Elsevier, vol. 120(C), pages 201-208.
    6. Ranjbaran, M. & Zare, D., 2013. "Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans," Energy, Elsevier, vol. 59(C), pages 484-493.
    7. Andrea Aquino & Pietro Poesio, 2021. "Off-Design Exergy Analysis of Convective Drying Using a Two-Phase Multispecies Model," Energies, MDPI, vol. 14(1), pages 1-36, January.
    8. Mondal, Md. Hasan Tarek & Sarker, Md. Sazzat Hossain, 2024. "Comprehensive energy analysis and environmental sustainability of industrial grain drying," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    9. Bin Li & Changyou Li & Tao Li & Zhiheng Zeng & Wenyan Ou & Chengjie Li, 2019. "Exergetic, Energetic, and Quality Performance Evaluation of Paddy Drying in a Novel Industrial Multi-Field Synergistic Dryer," Energies, MDPI, vol. 12(23), pages 1-19, December.
    10. Azadbakht, Mohsen & Torshizi, Mohammad Vahedi & Noshad, Fatemeh & Rokhbin, Arash, 2018. "Application of artificial neural network method for prediction of osmotic pretreatment based on the energy and exergy analyses in microwave drying of orange slices," Energy, Elsevier, vol. 165(PB), pages 836-845.
    11. Erbay, Zafer & Hepbasli, Arif, 2017. "Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method," Energy, Elsevier, vol. 127(C), pages 502-515.
    12. Jankowiak, Lena & Jonkman, Jochem & Rossier-Miranda, Francisco J. & van der Goot, Atze Jan & Boom, Remko M., 2014. "Exergy driven process synthesis for isoflavone recovery from okara," Energy, Elsevier, vol. 74(C), pages 471-483.
    13. Yahya, M. & Rachman, Arfidian & Hasibuan, R., 2022. "Performance analysis of solar-biomass hybrid heat pump batch-type horizontal fluidized bed dryer using multi-stage heat exchanger for paddy drying," Energy, Elsevier, vol. 254(PB).
    14. Das, Hirakh Jyoti & Saikia, Rituraj & Mahanta, Pinakeswar, 2023. "Thermo-economic assessment of bubbling fluidized bed paddy dryers," Energy, Elsevier, vol. 263(PC).
    15. Li, Chengjie & Chen, Yifu & Zhang, Xuefeng & Mozafari, Ghazaleh & Fang, Zhuangdong & Cao, Yankai & Li, Changyou, 2022. "Exergy analysis and optimisation of an industrial-scale circulation counter-flow paddy drying process," Energy, Elsevier, vol. 251(C).
    16. Azadbakht, Mohsen & Aghili, Hajar & Ziaratban, Armin & Torshizi, Mohammad Vahedi, 2017. "Application of artificial neural network method to exergy and energy analyses of fluidized bed dryer for potato cubes," Energy, Elsevier, vol. 120(C), pages 947-958.
    17. Jafari, Hassan & Kalantari, Davood & Azadbakht, Mohsen, 2017. "Semi-industrial continuous band microwave dryer for energy and exergy analyses, mathematical modeling of paddy drying and it's qualitative study," Energy, Elsevier, vol. 138(C), pages 1016-1029.
    18. Yogendrasasidhar, D. & Pydi Setty, Y., 2018. "Drying kinetics, exergy and energy analyses of Kodo millet grains and Fenugreek seeds using wall heated fluidized bed dryer," Energy, Elsevier, vol. 151(C), pages 799-811.
    19. Singh, Shobhana & Kumar, Subodh, 2013. "Solar drying for different test conditions: Proposed framework for estimation of specific energy consumption and CO2 emissions mitigation," Energy, Elsevier, vol. 51(C), pages 27-36.
    20. El Hallaoui, Zhor & El Hamdani, Fayrouz & Vaudreuil, Sébastien & Bounahmidi, Tijani & Abderafi, Souad, 2022. "Identifying the optimum operating conditions for the integration of a solar loop to power an industrial flash dryer: Combining an exergy analysis with genetic algorithm optimization," Renewable Energy, Elsevier, vol. 191(C), pages 828-841.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223021667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.