IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i7p2992-2998.html
   My bibliography  Save this article

Experimental determination and analysis of CO2, SO2 and NOx emission factors in Iran’s thermal power plants

Author

Listed:
  • Nazari, S.
  • Shahhoseini, O.
  • Sohrabi-Kashani, A.
  • Davari, S.
  • Paydar, R.
  • Delavar-Moghadam, Z.

Abstract

Emission factors of CO2, SO2 and NOx emitted from Iran’s thermal power plants are fully covered in this paper. To start with, emission factors of flue gases were calculated for fifty thermal power plants with the total installed capacity of 34,863MW over the period 2007–2008 with regard to the power plants’ operation characteristics including generation capacity, fuel type and amount and the corresponding alterations, stack specifications, analysis of flue gases and physical details of combustion gases in terms of gkWh−1. This factor was calculated as 620, 2.57 and 2.31gkWh−1 for CO2, SO2 and NOx respectively. Regarding these results, total emissions of CO2, SO2 and NOx were found to be 125.34, 0.552 and 0.465Tg in turn. To achieve an accurate comparison, these values were compared with their alternatives in North American countries. According to this comparison, emission factor of flue gases emitted from Iran’s thermal power plants will experience an intensive decline if renewable, hydroelectric and nuclear types of energy are more used, power plants’ efficiency is increased and continuous emission monitoring systems and power plant pollution reduction systems are utilized.

Suggested Citation

  • Nazari, S. & Shahhoseini, O. & Sohrabi-Kashani, A. & Davari, S. & Paydar, R. & Delavar-Moghadam, Z., 2010. "Experimental determination and analysis of CO2, SO2 and NOx emission factors in Iran’s thermal power plants," Energy, Elsevier, vol. 35(7), pages 2992-2998.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:7:p:2992-2998
    DOI: 10.1016/j.energy.2010.03.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210001544
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.03.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uliasz-Bochenczyk, Alicja & Mokrzycki, Eugeniusz, 2007. "Emissions from the Polish power industry," Energy, Elsevier, vol. 32(12), pages 2370-2375.
    2. Swisher, Joel N. & McAlpin, Maria C., 2006. "Environmental impact of electricity deregulation," Energy, Elsevier, vol. 31(6), pages 1067-1083.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia dos Santos Renato & Augusto Cesar Laviola de Oliveira & Amanda Martins Teixeira Ervilha & Sarah Falchetto Antoniazzi & Julia Moltó & Juan Antonio Conesa & Alisson Carraro Borges, 2024. "Replacing Natural Gas with Biomethane from Sewage Treatment: Optimizing the Potential in São Paulo State, Brazil," Energies, MDPI, vol. 17(7), pages 1-11, March.
    2. Mohammad Alrbai & Sameer Al-Dahidi & Loiy Al-Ghussain & Hassan Hayajneh & Ali Alahmer, 2023. "A Sustainable Wind–Biogas Hybrid System for Remote Areas in Jordan: A Case Study of Mobile Hospital for a Zaatari Syrian Refugee Camp," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    3. Jingbiao Yang & Shengxiang Deng & Hui Xu & Ye Zhao & Changda Nie & Yongju He, 2021. "Investigation and Practical Application of Silica Nanoparticles Composite Underwater Repairing Materials," Energies, MDPI, vol. 14(9), pages 1-10, April.
    4. Darvishi, Hosain & Khodaei, Jalal & Behroozi-Khazaei, Nasser & Salami, Payman & Akhijahani, Hadi Samimi, 2023. "Greenhouse gas emission reduction potential, energy and exergy analysis of combined microwave-convective dryer," Energy, Elsevier, vol. 285(C).
    5. Qian, Yuan & Scherer, Laura & Tukker, Arnold & Behrens, Paul, 2020. "China's potential SO2 emissions from coal by 2050," Energy Policy, Elsevier, vol. 147(C).
    6. Yorgos Spanodimitriou & Giovanni Ciampi & Michelangelo Scorpio & Niloufar Mokhtari & Ainoor Teimoorzadeh & Roberta Laffi & Sergio Sibilio, 2022. "Passive Strategies for Building Retrofitting: Performances Analysis and Incentive Policies for the Iranian Scenario," Energies, MDPI, vol. 15(5), pages 1-22, February.
    7. Oliver, A. & Montero, G. & Montenegro, R. & Rodríguez, E. & Escobar, J.M. & Pérez-Foguet, A., 2013. "Adaptive finite element simulation of stack pollutant emissions over complex terrains," Energy, Elsevier, vol. 49(C), pages 47-60.
    8. Mazandarani, A. & Mahlia, T.M.I. & Chong, W.T. & Moghavvemi, M., 2011. "Fuel consumption and emission prediction by Iranian power plants until 2025," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1575-1592, April.
    9. Akpan, P.U. & Fuls, W.F., 2021. "Cycling of coal fired power plants: A generic CO2 emissions factor model for predicting CO2 emissions," Energy, Elsevier, vol. 214(C).
    10. Dios, M. & Souto, J.A. & Casares, J.J., 2013. "Experimental development of CO2, SO2 and NOx emission factors for mixed lignite and subbituminous coal-fired power plant," Energy, Elsevier, vol. 53(C), pages 40-51.
    11. Mojtaba Jorli & Steven Van Passel & Hossein Sadeghi & Alireza Nasseri & Lotfali Agheli, 2017. "Estimating Human Health Impacts and Costs Due to Iranian Fossil Fuel Power Plant Emissions through the Impact Pathway Approach," Energies, MDPI, vol. 10(12), pages 1-29, December.
    12. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    13. Yongxiu He & Yangyang Liu & Tian Xia & Min Du & Hongzhen Guo, 2014. "The Optimal Price Ratio of Typical Energy Sources in Beijing Based on the Computable General Equilibrium Model," Energies, MDPI, vol. 7(5), pages 1-24, April.
    14. He, Yongxiu & Liu, Yangyang & Wang, Jianhui & Xia, Tian & Zhao, Yushan, 2014. "Low-carbon-oriented dynamic optimization of residential energy pricing in China," Energy, Elsevier, vol. 66(C), pages 610-623.
    15. Diaz-Mendez, S.E. & Torres-Rodríguez, A.A. & Abatal, M. & Soberanis, M.A. Escalante & Bassam, A. & Pedraza-Basulto, G.K., 2018. "Economic, environmental and health co-benefits of the use of advanced control strategies for lighting in buildings of Mexico," Energy Policy, Elsevier, vol. 113(C), pages 401-409.
    16. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    17. Biglarian, Hassan & Abdollahi, Sina, 2022. "Utilization of on-grid photovoltaic panels to offset electricity consumption of a residential ground source heat pump," Energy, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katarzyna Pactwa & Justyna Woźniak & Michał Dudek, 2020. "Sustainable Social and Environmental Evaluation of Post-Industrial Facilities in a Closed Loop Perspective in Coal-Mining Areas in Poland," Sustainability, MDPI, vol. 13(1), pages 1-16, December.
    2. Hainoun, A. & Almoustafa, A. & Seif Aldin, M., 2010. "Estimating the health damage costs of syrian electricity generation system using impact pathway approach," Energy, Elsevier, vol. 35(2), pages 628-638.
    3. Bespalova, Olga Gennadyevna, 2011. "Bespalova, Olga Gennadyevna (2011): Renewable portfolio standards in the USA: experience and compliance with targets. Published in: K-State Electronic Theses, Dissertations, and Reports No. May 2011 (," MPRA Paper 117672, University Library of Munich, Germany, revised 22 Apr 2011.
    4. Asane-Otoo, Emmanuel, 2016. "Competition policies and environmental quality: Empirical analysis of the electricity sector in OECD countries," Energy Policy, Elsevier, vol. 95(C), pages 212-223.
    5. Dios, M. & Souto, J.A. & Casares, J.J., 2013. "Experimental development of CO2, SO2 and NOx emission factors for mixed lignite and subbituminous coal-fired power plant," Energy, Elsevier, vol. 53(C), pages 40-51.
    6. Psomopoulos, C.S. & Skoula, I. & Karras, C. & Chatzimpiros, A. & Chionidis, M., 2010. "Electricity savings and CO2 emissions reduction in buildings sector: How important the network losses are in the calculation?," Energy, Elsevier, vol. 35(1), pages 485-490.
    7. Sharabaroff, Alexander & Boyd, Roy & Chimeli, Ariaster, 2009. "The environmental and efficiency effects of restructuring on the electric power sector in the United States: An empirical analysis," Energy Policy, Elsevier, vol. 37(11), pages 4884-4893, November.
    8. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    9. Meyer, Andrew & Pac, Grzegorz, 2013. "Environmental performance of state-owned and privatized eastern European energy utilities," Energy Economics, Elsevier, vol. 36(C), pages 205-214.
    10. Meyer, Andrew & Pac, Grzegorz, 2017. "Analyzing the characteristics of plants choosing to opt-out of the Large Combustion Plant Directive," Utilities Policy, Elsevier, vol. 45(C), pages 61-68.
    11. Alex Y. H. Lo, 2008. "Achieving Environmental Goals in a Competitive Electricity Market?: Post-Colonial Hong Kong, Public Choice and the Role of Government," Energy & Environment, , vol. 19(7), pages 959-978, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:7:p:2992-2998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.