IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223027378.html
   My bibliography  Save this article

A power-sharing electro-hydraulic actuator system to downsize electric motors for electric mobile machines

Author

Listed:
  • Wang, Feng
  • Wu, Jiaming
  • Lin, Zichang
  • Zhang, Haoxiang
  • Xu, Bing

Abstract

Hydraulic drives are popular in multiple industries due to their high-power density, robust operation, and low cost. However, they often suffer from low energy efficiencies, particularly in mobile applications where multiple functions are powered by a single pump. Decentralized hydraulic solutions, such as electro-hydraulic actuators, have emerged as a more efficient alternative. Nevertheless, the oversized electric motors compared to centralized solutions prevent it from penetrating the market. Therefore, in this paper, a power-sharing electro-hydraulic actuator system with planetary gearsets is proposed. This system allows for high-level system efficiency and downsized electric drive system, making it applicable to a wide range of applications. A minimum power loss strategy and system parameter optimization are proposed. The system operation and energy comparison between proposed system and baseline system is presented. Result shows the total installed motor power of proposed system is reduced by 37.0 % (from 138 kW to 87 kW) with a slightly lower overall efficiency.

Suggested Citation

  • Wang, Feng & Wu, Jiaming & Lin, Zichang & Zhang, Haoxiang & Xu, Bing, 2023. "A power-sharing electro-hydraulic actuator system to downsize electric motors for electric mobile machines," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223027378
    DOI: 10.1016/j.energy.2023.129343
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223027378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129343?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Damiano Padovani & Søren Ketelsen & Daniel Hagen & Lasse Schmidt, 2019. "A Self-Contained Electro-Hydraulic Cylinder with Passive Load-Holding Capability," Energies, MDPI, vol. 12(2), pages 1-21, January.
    2. Andrea Vacca, 2018. "Energy Efficiency and Controllability of Fluid Power Systems," Energies, MDPI, vol. 11(5), pages 1-6, May.
    3. Qu, Shaoyang & Fassbender, David & Vacca, Andrea & Busquets, Enrique, 2021. "A high-efficient solution for electro-hydraulic actuators with energy regeneration capability," Energy, Elsevier, vol. 216(C).
    4. He, Xiangyu & Liu, Hao & He, Shanghong & Hu, Bili & Xiao, Guangxin, 2019. "Research on the energy efficiency of energy regeneration systems for a battery-powered hydrostatic vehicle," Energy, Elsevier, vol. 178(C), pages 400-418.
    5. Ramakrishnan, R. & Hiremath, Somashekhar S. & Singaperumal, M., 2014. "Design strategy for improving the energy efficiency in series hydraulic/electric synergy system," Energy, Elsevier, vol. 67(C), pages 422-434.
    6. Søren Ketelsen & Damiano Padovani & Torben O. Andersen & Morten Kjeld Ebbesen & Lasse Schmidt, 2019. "Classification and Review of Pump-Controlled Differential Cylinder Drives," Energies, MDPI, vol. 12(7), pages 1-27, April.
    7. Zhang, Haoxiang & Wang, Feng & Xu, Bing & Fiebig, Wieslaw, 2022. "Extending battery lifetime for electric wheel loaders with electric-hydraulic hybrid powertrain," Energy, Elsevier, vol. 261(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Shaoyang & Fassbender, David & Vacca, Andrea & Busquets, Enrique, 2021. "A high-efficient solution for electro-hydraulic actuators with energy regeneration capability," Energy, Elsevier, vol. 216(C).
    2. Konrad Johan Jensen & Morten Kjeld Ebbesen & Michael Rygaard Hansen, 2021. "Novel Concept for Electro-Hydrostatic Actuators for Motion Control of Hydraulic Manipulators," Energies, MDPI, vol. 14(20), pages 1-27, October.
    3. Lasse Schmidt & Kenneth Vorbøl Hansen, 2022. "Electro-Hydraulic Variable-Speed Drive Networks—Idea, Perspectives, and Energy Saving Potentials," Energies, MDPI, vol. 15(3), pages 1-33, February.
    4. Søren Ketelsen & Sebastian Michel & Torben O. Andersen & Morten Kjeld Ebbesen & Jürgen Weber & Lasse Schmidt, 2021. "Thermo-Hydraulic Modelling and Experimental Validation of an Electro-Hydraulic Compact Drive," Energies, MDPI, vol. 14(9), pages 1-29, April.
    5. Lin, Zichang & Lin, Zhenchuan & Wang, Feng & Xu, Bing, 2024. "A series electric hybrid wheel loader powertrain with independent electric load-sensing system," Energy, Elsevier, vol. 286(C).
    6. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    7. Paolo Casoli & Fabio Scolari & Carlo Maria Vescovini & Massimo Rundo, 2022. "Energy Comparison between a Load Sensing System and Electro-Hydraulic Solutions Applied to a 9-Ton Excavator," Energies, MDPI, vol. 15(7), pages 1-15, April.
    8. Lasse Schmidt & Søren Ketelsen & Morten Helms Brask & Kasper Aastrup Mortensen, 2019. "A Class of Energy Efficient Self-Contained Electro-Hydraulic Drives with Self-Locking Capability," Energies, MDPI, vol. 12(10), pages 1-26, May.
    9. Wang, Feng & Lin, Zichang & Li, Jiaqi & Zhang, Chen & Xiao, Jin & Xu, Bing, 2024. "A free piston engine generator powered hybrid wheel loader with independent electric drive," Energy, Elsevier, vol. 286(C).
    10. Li, Lin & Zhang, Tiezhu & Sun, Binbin & Wu, Kaiwei & Sun, Zehao & Zhang, Zhen & Lin, Lianhua & Xu, Haigang, 2023. "Research on electro-hydraulic ratios for a novel mechanical-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 270(C).
    11. Liu, Huanlong & Wang, Xu & Tian, Hao & Gan, Shicheng & Zhou, Jianyi & Wang, Jiawei, 2024. "Energy-saving starting method of electric motor based on the battery-accumulator hybrid drive," Energy, Elsevier, vol. 286(C).
    12. Jichao Liu & Yanyan Liang & Zheng Chen & Wenpeng Chen, 2023. "Energy Management Strategies for Hybrid Loaders: Classification, Comparison and Prospect," Energies, MDPI, vol. 16(7), pages 1-23, March.
    13. Zhang, Haoxiang & Wang, Feng & Lin, Zichang & Xu, Bing, 2023. "Optimization of speed trajectory for electric wheel loaders: Battery lifetime extension," Applied Energy, Elsevier, vol. 351(C).
    14. Lukasz Stawinski & Justyna Skowronska & Andrzej Kosucki, 2021. "Energy Efficiency and Limitations of the Methods of Controlling the Hydraulic Cylinder Piston Rod under Various Load Conditions," Energies, MDPI, vol. 14(23), pages 1-20, November.
    15. Liu, Huanlong & Chen, Guanpeng & Xie, Chixin & Li, Dafa & Wang, Jiawei & Li, Shun, 2020. "Research on energy-saving characteristics of battery-powered electric-hydrostatic hydraulic hybrid rail vehicles," Energy, Elsevier, vol. 205(C).
    16. Hyukjoon Kwon & Monika Ivantysynova, 2020. "System Characteristics Analysis for Energy Management of Power-Split Hydraulic Hybrids," Energies, MDPI, vol. 13(7), pages 1-23, April.
    17. Teemu Koitto & Heikki Kauranne & Olof Calonius & Tatiana Minav & Matti Pietola, 2019. "Experimental Study on Fast and Energy-Efficient Direct Driven Hydraulic Actuator Unit," Energies, MDPI, vol. 12(8), pages 1-17, April.
    18. Kwon, Hyukjoon & Ivantysynova, Monika, 2021. "Experimental and theoretical studies on energy characteristics of hydraulic hybrids for thermal management," Energy, Elsevier, vol. 223(C).
    19. Zhang, Shiyou & Peng, Keming & Wei, Wenlong & Tang, Siqi & Yao, Jin, 2021. "The matrix method of energy analysis and energy-saving design on the electromechanical system," Energy, Elsevier, vol. 224(C).
    20. Shabani, Masoume & Wallin, Fredrik & Dahlquist, Erik & Yan, Jinyue, 2023. "The impact of battery operating management strategies on life cycle cost assessment in real power market for a grid-connected residential battery application," Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223027378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.