IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224032493.html
   My bibliography  Save this article

Design and verification of a novel energy-efficient pump-valve primary-auxiliary electro-hydraulic steering system for multi-axle heavy vehicles

Author

Listed:
  • Li, Su
  • Zhang, Zhizhong
  • Du, Heng
  • Zheng, Guoqiang
  • Zhang, Xiaolong
  • Li, Zerong

Abstract

Multi-axle heavy vehicles employ a variable-length tie rod steering system to achieve precise multi-mode steering. However, the single-axle steering system need integrate two sets of electro-hydraulic control systems (EHCSs), resulting in the energy consumption significant increase. This paper proposes a novel energy-efficient pump-valve primary-auxiliary electro-hydraulic steering system (PVPA EHSS) which compose of a pump-controlled dual-steering cylinders primary system and a valve-controlled variable-length tie rod cylinder auxiliary system. The proposed system utilizes a single pump to drive both the primary and auxiliary EHCSs simultaneously, enabling high-precision and high-efficiency steering with multi steering modes. Additionally, to suppress the flow disturbance of the auxiliary system branch flow on the single-pump-controlled steering primary system, the interaction between the flow of the auxiliary system and the flow of the primary system in each steering phase is studied. A pump flow feedforward-angle feedback composite control strategy incorporating branch flow prediction is proposed to mitigate the disturbance and ensure the accurate steering of left and right tires. The experimental results demonstrate that compared to the traditional variable-length tie rod steering system, the proposed system reduces energy consumption by 58.66 %, and achieves precise adaptation of the left and right tire angles in multi steering modes.

Suggested Citation

  • Li, Su & Zhang, Zhizhong & Du, Heng & Zheng, Guoqiang & Zhang, Xiaolong & Li, Zerong, 2024. "Design and verification of a novel energy-efficient pump-valve primary-auxiliary electro-hydraulic steering system for multi-axle heavy vehicles," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032493
    DOI: 10.1016/j.energy.2024.133473
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224032493
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haixiang Bu & Aijuan Li & Xin Huang & Wei Li & Jian Wang, 2021. "Optimal Design of the Six-Wheel Steering System with Multiple Steering Modes," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-18, December.
    2. Wang, Feng & Wu, Jiaming & Lin, Zichang & Zhang, Haoxiang & Xu, Bing, 2023. "A power-sharing electro-hydraulic actuator system to downsize electric motors for electric mobile machines," Energy, Elsevier, vol. 284(C).
    3. David A. Cullen & K. C. Neyerlin & Rajesh K. Ahluwalia & Rangachary Mukundan & Karren L. More & Rodney L. Borup & Adam Z. Weber & Deborah J. Myers & Ahmet Kusoglu, 2021. "New roads and challenges for fuel cells in heavy-duty transportation," Nature Energy, Nature, vol. 6(5), pages 462-474, May.
    4. Qu, Shaoyang & Fassbender, David & Vacca, Andrea & Busquets, Enrique, 2021. "A high-efficient solution for electro-hydraulic actuators with energy regeneration capability," Energy, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    2. Tao, Jianjian & Zhang, Yihan & Wei, Xuezhe & Jiang, Shangfeng & Dai, Haifeng, 2024. "Optimization of fast cold start strategy for PEM fuel cell stack," Applied Energy, Elsevier, vol. 362(C).
    3. Li, Xiang & Tang, Fumin & Wang, Qianqian & Li, Bing & Dai, Haifeng & Chang, Guofeng & Zhang, Cunman & Ming, Pingwen, 2023. "Effect of cathode catalyst layer on proton exchange membrane fuel cell performance: Considering the spatially variable distribution," Renewable Energy, Elsevier, vol. 212(C), pages 644-654.
    4. Maximilian Grandi & Kurt Mayer & Matija Gatalo & Gregor Kapun & Francisco Ruiz-Zepeda & Bernhard Marius & Miran Gaberšček & Viktor Hacker, 2021. "The Influence Catalyst Layer Thickness on Resistance Contributions of PEMFC Determined by Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 14(21), pages 1-18, November.
    5. Zou, Weitao & Li, Jianwei & Yang, Qingqing & Wan, Xinming & He, Yuntang & Lan, Hao, 2023. "A real-time energy management approach with fuel cell and battery competition-synergy control for the fuel cell vehicle," Applied Energy, Elsevier, vol. 334(C).
    6. Martin, Jonas & Neumann, Anne & Ødegård, Anders, 2023. "Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    7. Chen, Jinxing & Bao, Zhiming & Xu, Yunfei & Fan, Linhao & Du, Qing & Qu, Guanshu & Li, Feiqiang & Jiao, Kui, 2024. "Investigation of liquid retention behavior in the flow field plate of large-size proton exchange membrane fuel cells: Effects of sub-distribution zone," Applied Energy, Elsevier, vol. 358(C).
    8. Ruixue Liu & Guannan He & Xizhe Wang & Dharik Mallapragada & Hongbo Zhao & Yang Shao-Horn & Benben Jiang, 2024. "A cross-scale framework for evaluating flexibility values of battery and fuel cell electric vehicles," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Zainal, Bidattul Syirat & Ker, Pin Jern & Mohamed, Hassan & Ong, Hwai Chyuan & Fattah, I.M.R. & Rahman, S.M. Ashrafur & Nghiem, Long D. & Mahlia, T M Indra, 2024. "Recent advancement and assessment of green hydrogen production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Jason K. Lee & Grace Anderson & Andrew W. Tricker & Finn Babbe & Arya Madan & David A. Cullen & José’ D. Arregui-Mena & Nemanja Danilovic & Rangachary Mukundan & Adam Z. Weber & Xiong Peng, 2023. "Ionomer-free and recyclable porous-transport electrode for high-performing proton-exchange-membrane water electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Lu, Yirui & Yang, Daijun & Wu, Haoyu & Jia, Linhan & Chen, Jie & Ming, Pingwen & Pan, Xiangmin, 2024. "Degradation mechanism analysis of a fuel cell stack based on perfluoro sulfonic acid membrane in near-water boiling temperature environment," Renewable Energy, Elsevier, vol. 234(C).
    12. Xia, Zhifeng & Chen, Huicui & Li, Weihong & Zhang, Ruirui & Xu, Yiming & Zhang, Tong & Pei, Pucheng, 2024. "Characterization and analysis of current distribution for oxygen starvation diagnosis: A research based on segmented PEMFC technology," Renewable Energy, Elsevier, vol. 237(PC).
    13. Qitao Hu & Paul Solomon & Lars Österlund & Zhen Zhang, 2024. "Nanotransistor-based gas sensing with record-high sensitivity enabled by electron trapping effect in nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Mohideen, Mohamedazeem M. & Subramanian, Balachandran & Sun, Jingyi & Ge, Jing & Guo, Han & Radhamani, Adiyodi Veettil & Ramakrishna, Seeram & Liu, Yong, 2023. "Techno-economic analysis of different shades of renewable and non-renewable energy-based hydrogen for fuel cell electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    15. Meng, L.Y. & Wang, G.F. & See, K.W. & Wang, Y.P. & Zhang, Y. & Zang, C.Y. & Li, S. & Xie, B., 2023. "Explosion characteristic of CH4–H2-Air mixtures vented by encapsulated large-scale Li-ion battery under thermal runaway," Energy, Elsevier, vol. 278(PA).
    16. Suárez, Christian & Toharias, Baltasar & Salva Aguirre, María & Chesalkin, Artem & Rosa, Felipe & Iranzo, Alfredo, 2023. "Experimental dynamic load cycling and current density measurements of different inlet/outlet configurations of a parallel-serpentine PEMFC," Energy, Elsevier, vol. 283(C).
    17. Iqbal, Mehroze & Becherif, Mohamed & Ramadan, Haitham S. & Badji, Abderrezak, 2021. "Dual-layer approach for systematic sizing and online energy management of fuel cell hybrid vehicles," Applied Energy, Elsevier, vol. 300(C).
    18. Jiang, Wei & Wang, Teng & Yuan, Dongdong & Sha, Aimin & Zhang, Shuo & Zhang, Yufei & Xiao, Jingjing & Xing, Chengwei, 2024. "Available solar resources and photovoltaic system planning strategy for highway," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    19. Dugoua, Eugenie & Dumas, Marion, 2024. "Coordination dynamics between fuel cell and battery technologies in the transition to clean cars," LSE Research Online Documents on Economics 124029, London School of Economics and Political Science, LSE Library.
    20. Rao, Amar & Dev, Dhairya & Kharbanda, Aeshna & Parihar, Jaya Singh & Sala, Dariusz, 2024. "Mineral policy and sustainable development goals: Volatility forecasting in the Global South's minerals market," Resources Policy, Elsevier, vol. 98(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.