IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223028918.html
   My bibliography  Save this article

A series electric hybrid wheel loader powertrain with independent electric load-sensing system

Author

Listed:
  • Lin, Zichang
  • Lin, Zhenchuan
  • Wang, Feng
  • Xu, Bing

Abstract

Electric hybrid powertrain is a promising way for wheel loader electrification. However, the widely used centralized load-sensing working hydraulic system has low efficiency with imbalance load. A novel electric hydraulic system configuration making good use of the electric drive is needed. An independent electric load-sensing hydraulic system for series hybrid wheel loaders is proposed in this study. The lift/tilt functions are powered by speed-controlled fixed displacement pump and controlled by proportional control valves. The independent electric load-sensing hydraulic system eliminates the system inherent power losses of the multi-actuator hydraulic system and combines the high efficiency of variable speed fixed displacement pump and high dynamic performance of valve control. Simulation study on energy efficiency comparison among the proposed powertrain, the existing hybrid powertrain and the non-hybrid powertrain is carried out to check its potential on fuel saving. Results show that the independent electric load-sensing system improves the working hydraulic system efficiency from 34.0% to 54.9% compared to the centralized load-sensing system. The proposed hybrid powertrain saves 11.8% of the fuel consumption compared to the existing hybrid solution, and 41.9% lower than non-hybrid powertrain.

Suggested Citation

  • Lin, Zichang & Lin, Zhenchuan & Wang, Feng & Xu, Bing, 2024. "A series electric hybrid wheel loader powertrain with independent electric load-sensing system," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223028918
    DOI: 10.1016/j.energy.2023.129497
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223028918
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Gaillard, Patrick, 2021. "Impact of the hybrid electric architecture on the performance and emissions of a delivery truck with a dual-fuel RCCI engine," Applied Energy, Elsevier, vol. 301(C).
    2. Lin, Tianliang & Lin, Yuanzheng & Ren, Haoling & Chen, Haibin & Li, Zhongshen & Chen, Qihuai, 2021. "A double variable control load sensing system for electric hydraulic excavator," Energy, Elsevier, vol. 223(C).
    3. Søren Ketelsen & Damiano Padovani & Torben O. Andersen & Morten Kjeld Ebbesen & Lasse Schmidt, 2019. "Classification and Review of Pump-Controlled Differential Cylinder Drives," Energies, MDPI, vol. 12(7), pages 1-27, April.
    4. Jan Siebert & Marco Wydra & Marcus Geimer, 2017. "Efficiency Improved Load Sensing System—Reduction of System Inherent Pressure Losses," Energies, MDPI, vol. 10(7), pages 1-22, July.
    5. Pugi, L. & Pagliai, M. & Nocentini, A. & Lutzemberger, G. & Pretto, A., 2017. "Design of a hydraulic servo-actuation fed by a regenerative braking system," Applied Energy, Elsevier, vol. 187(C), pages 96-115.
    6. He, Xiangyu & Liu, Hao & He, Shanghong & Hu, Bili & Xiao, Guangxin, 2019. "Research on the energy efficiency of energy regeneration systems for a battery-powered hydrostatic vehicle," Energy, Elsevier, vol. 178(C), pages 400-418.
    7. Tran, Dai-Duong & Vafaeipour, Majid & El Baghdadi, Mohamed & Barrero, Ricardo & Van Mierlo, Joeri & Hegazy, Omar, 2020. "Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Qu, Shaoyang & Fassbender, David & Vacca, Andrea & Busquets, Enrique, 2021. "A high-efficient solution for electro-hydraulic actuators with energy regeneration capability," Energy, Elsevier, vol. 216(C).
    9. Lin, Tianliang & Lin, Yuanzheng & Ren, Haoling & Chen, Haibin & Chen, Qihuai & Li, Zhongshen, 2020. "Development and key technologies of pure electric construction machinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Liuquan & Wang, Weida & Yang, Chao & Wang, Muyao & Chen, Yifan & Jiang, Zhuangzhuang & Zhang, Yuhang & Liu, Guosheng, 2024. "Time-delay-aware power coordinated control approach for series hybrid electric vehicles," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Feng & Lin, Zichang & Li, Jiaqi & Zhang, Chen & Xiao, Jin & Xu, Bing, 2024. "A free piston engine generator powered hybrid wheel loader with independent electric drive," Energy, Elsevier, vol. 286(C).
    2. Wang, Feng & Wu, Jiaming & Lin, Zichang & Zhang, Haoxiang & Xu, Bing, 2023. "A power-sharing electro-hydraulic actuator system to downsize electric motors for electric mobile machines," Energy, Elsevier, vol. 284(C).
    3. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    4. Konrad Johan Jensen & Morten Kjeld Ebbesen & Michael Rygaard Hansen, 2021. "Novel Concept for Electro-Hydrostatic Actuators for Motion Control of Hydraulic Manipulators," Energies, MDPI, vol. 14(20), pages 1-27, October.
    5. Qu, Shaoyang & Fassbender, David & Vacca, Andrea & Busquets, Enrique, 2021. "A high-efficient solution for electro-hydraulic actuators with energy regeneration capability," Energy, Elsevier, vol. 216(C).
    6. Lasse Schmidt & Kenneth Vorbøl Hansen, 2022. "Electro-Hydraulic Variable-Speed Drive Networks—Idea, Perspectives, and Energy Saving Potentials," Energies, MDPI, vol. 15(3), pages 1-33, February.
    7. Søren Ketelsen & Sebastian Michel & Torben O. Andersen & Morten Kjeld Ebbesen & Jürgen Weber & Lasse Schmidt, 2021. "Thermo-Hydraulic Modelling and Experimental Validation of an Electro-Hydraulic Compact Drive," Energies, MDPI, vol. 14(9), pages 1-29, April.
    8. Daniele Beltrami & Paolo Iora & Laura Tribioli & Stefano Uberti, 2021. "Electrification of Compact Off-Highway Vehicles—Overview of the Current State of the Art and Trends," Energies, MDPI, vol. 14(17), pages 1-30, September.
    9. Tan, Lisha & He, Xiangyu & Xiao, Guangxin & Jiang, Mengjun & Yuan, Yulin, 2022. "Design and energy analysis of novel hydraulic regenerative potential energy systems," Energy, Elsevier, vol. 249(C).
    10. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    11. Liu, Huanlong & Wang, Xu & Tian, Hao & Gan, Shicheng & Zhou, Jianyi & Wang, Jiawei, 2024. "Energy-saving starting method of electric motor based on the battery-accumulator hybrid drive," Energy, Elsevier, vol. 286(C).
    12. Yi Zhang & Qiang Guo & Jie Song, 2023. "Internet-Distributed Hardware-in-the-Loop Simulation Platform for Plug-In Fuel Cell Hybrid Vehicles," Energies, MDPI, vol. 16(18), pages 1-17, September.
    13. Andrea Vacca, 2018. "Energy Efficiency and Controllability of Fluid Power Systems," Energies, MDPI, vol. 11(5), pages 1-6, May.
    14. Do, Tri Cuong & Dinh, Truong Quang & Yu, Yingxiao & Ahn, Kyoung Kwan, 2023. "Innovative powertrain and advanced energy management strategy for hybrid hydraulic excavators," Energy, Elsevier, vol. 282(C).
    15. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    16. Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
    17. Matthieu Matignon & Toufik Azib & Mehdi Mcharek & Ahmed Chaibet & Adriano Ceschia, 2023. "Real-Time Integrated Energy Management Strategy Applied to Fuel Cell Hybrid Systems," Energies, MDPI, vol. 16(6), pages 1-21, March.
    18. Xiaotao Fei & Yunwu Han & Shaw Voon Wong & Muhammad Amin Azman & Wenlong Shen, 2024. "Design and Testing of Innovative Type of Dual-Motor Drive Electric Wheel Loader," Energies, MDPI, vol. 17(7), pages 1-28, March.
    19. Paolo Casoli & Fabio Scolari & Carlo Maria Vescovini & Massimo Rundo, 2022. "Energy Comparison between a Load Sensing System and Electro-Hydraulic Solutions Applied to a 9-Ton Excavator," Energies, MDPI, vol. 15(7), pages 1-15, April.
    20. Abdulgader Alsharif & Chee Wei Tan & Razman Ayop & Ahmed Al Smin & Abdussalam Ali Ahmed & Farag Hamed Kuwil & Mohamed Mohamed Khaleel, 2023. "Impact of Electric Vehicle on Residential Power Distribution Considering Energy Management Strategy and Stochastic Monte Carlo Algorithm," Energies, MDPI, vol. 16(3), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223028918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.