A graphic analysis method of electrochemical systems for low-grade heat harvesting from a perspective of thermodynamic cycles
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.116547
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Eller, Tim & Heberle, Florian & Brüggemann, Dieter, 2017. "Second law analysis of novel working fluid pairs for waste heat recovery by the Kalina cycle," Energy, Elsevier, vol. 119(C), pages 188-198.
- Wang, Jianyong & Wang, Jiangfeng & Dai, Yiping & Zhao, Pan, 2017. "Assessment of off-design performance of a Kalina cycle driven by low-grade heat source," Energy, Elsevier, vol. 138(C), pages 459-472.
- Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.
- Xu, Weicong & Deng, Shuai & Su, Wen & Zhang, Ying & Zhao, Li & Yu, Zhixin, 2018. "How to approach Carnot cycle via zeotropic working fluid: Research methodology and case study," Energy, Elsevier, vol. 144(C), pages 576-586.
- Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2016. "Ecological analysis of a thermally regenerative electrochemical cycle," Energy, Elsevier, vol. 107(C), pages 95-102.
- Carati, A. & Marino, M. & Brogioli, D., 2015. "Thermodynamic study of a distiller-electrochemical cell system for energy production from low temperature heat sources," Energy, Elsevier, vol. 93(P1), pages 984-993.
- Xu, Weicong & Deng, Shuai & Zhao, Li & Zhang, Yue & Li, Shuangjun, 2019. "Performance analysis on novel thermodynamic cycle under the guidance of 3D construction method," Applied Energy, Elsevier, vol. 250(C), pages 478-492.
- Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 93(P1), pages 1022-1029.
- Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
- Forman, Clemens & Muritala, Ibrahim Kolawole & Pardemann, Robert & Meyer, Bernd, 2016. "Estimating the global waste heat potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1568-1579.
- Zhang, Xin & Cai, Ling & Liao, Tianjun & Zhou, Yinghui & Zhao, Yingru & Chen, Jincan, 2018. "Exploiting the waste heat from an alkaline fuel cell via electrochemical cycles," Energy, Elsevier, vol. 142(C), pages 983-990.
- Brogioli, Doriano & La Mantia, Fabio & Yip, Ngai Yin, 2019. "Energy efficiency analysis of distillation for thermally regenerative salinity gradient power technologies," Renewable Energy, Elsevier, vol. 133(C), pages 1034-1045.
- Seok Woo Lee & Yuan Yang & Hyun-Wook Lee & Hadi Ghasemi & Daniel Kraemer & Gang Chen & Yi Cui, 2014. "An electrochemical system for efficiently harvesting low-grade heat energy," Nature Communications, Nature, vol. 5(1), pages 1-6, September.
- Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Performance analysis of a thermally regenerative electrochemical cycle for harvesting waste heat," Energy, Elsevier, vol. 87(C), pages 463-469.
- Iglesias Garcia, Steven & Ferreiro Garcia, Ramon & Carbia Carril, Jose & Iglesias Garcia, Denis, 2018. "A review of thermodynamic cycles used in low temperature recovery systems over the last two years," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 760-767.
- Dong, Shichong & Shen, Guoqing & Xu, Mobei & Zhang, Shiping & An, Liansuo, 2019. "The effect of working fluid on the performance of a large-scale thermoacoustic Stirling engine," Energy, Elsevier, vol. 181(C), pages 378-386.
- Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
- Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2016. "Performance analysis of a dual loop thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 107(C), pages 388-395.
- Zhang, Xinxin & He, Maogang & Zhang, Ying, 2012. "A review of research on the Kalina cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5309-5318.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nie, Xianhua & Xue, Juan & Zhao, Li & Deng, Shuai & Xiong, Hanping, 2024. "New insight of thermodynamic cycle in thermoelectric power generation analyses: Literature review and perspectives," Energy, Elsevier, vol. 292(C).
- Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
- Lu, Buchu & Jiao, Fan & Chen, Chen & Yan, Xiangyu & Liu, Qibin, 2023. "Temperature-entropy and energy utilization diagrams for energy, exergy, and energy level analysis in solar water splitting reactions," Energy, Elsevier, vol. 284(C).
- Chen, Ruihua & Xu, Weicong & Deng, Shuai & Zhao, Ruikai & Choi, Siyoung Q. & Zhao, Li, 2023. "Towards the Carnot efficiency with a novel electrochemical heat engine based on the Carnot cycle: Thermodynamic considerations," Energy, Elsevier, vol. 284(C).
- Chen, Ruihua & Xu, Weicong & Deng, Shuai & Zhao, Ruikai & Choi, Siyoung Q. & Zhao, Li, 2023. "A contemporary description of the Carnot cycle featured by chemical work from equilibrium: The electrochemical Carnot cycle," Energy, Elsevier, vol. 280(C).
- Chen, Ruihua & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Xu, Weicong, 2021. "A cycle research methodology for thermo-chemical engines: From ideal cycle to case study," Energy, Elsevier, vol. 228(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Ruihua & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Xu, Weicong, 2021. "A cycle research methodology for thermo-chemical engines: From ideal cycle to case study," Energy, Elsevier, vol. 228(C).
- Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
- Guo, Xinru & Zhang, Houcheng, 2020. "Performance analyses of a combined system consisting of high-temperature polymer electrolyte membrane fuel cells and thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 193(C).
- Lin, Jian & Wu, Nianyuan & Li, Li & Xie, Meina & Xie, Shan & Wang, Xiaonan & Brandon, Nigel & Sun, Yifei & Chen, Jincan & Zhao, Yingru, 2022. "Performance and parameter optimization of a capacitive salinity/heat engine for harvesting salinity difference energy and low grade heat," Renewable Energy, Elsevier, vol. 183(C), pages 283-293.
- Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
- Long, Rui & Lai, Xiaotian & Liu, Zhichun & Liu, Wei, 2019. "Pressure retarded osmosis: Operating in a compromise between power density and energy efficiency," Energy, Elsevier, vol. 172(C), pages 592-598.
- Zhang, Xin & Cai, Ling & Liao, Tianjun & Zhou, Yinghui & Zhao, Yingru & Chen, Jincan, 2018. "Exploiting the waste heat from an alkaline fuel cell via electrochemical cycles," Energy, Elsevier, vol. 142(C), pages 983-990.
- Lai, Xi & Zhao, Li & Nie, Xianhua & Zhang, Yue & Zhang, Qi, 2023. "Hydrate-based composition separation of R32/R1234yf mixed working fluids applied in composition-adjustable organic Rankine cycle," Energy, Elsevier, vol. 284(C).
- Huang, Yuewu & Li, Danyi & Chen, Zhuo, 2022. "Potential analysis of a system hybridizing dye-sensitized solar cell with thermally regenerative electrochemical devices," Energy, Elsevier, vol. 260(C).
- Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
- Yingyan Lin & Ronghui Xiao & Liwei Chen & Houcheng Zhang, 2023. "Performance Potential of a Concentrated Photovoltaic-Electrochemical Hybrid System," Energies, MDPI, vol. 17(1), pages 1-21, December.
- Fathabadi, Hassan, 2019. "Solar energy harvesting in buildings using a proposed novel electrochemical device as an alternative to PV modules," Renewable Energy, Elsevier, vol. 133(C), pages 118-125.
- Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2016. "Ecological analysis of a thermally regenerative electrochemical cycle," Energy, Elsevier, vol. 107(C), pages 95-102.
- Li, Baode & Long, Rui & Liu, Zhichun & Liu, Wei, 2016. "Performance analysis of a thermally regenerative electrochemical refrigerator," Energy, Elsevier, vol. 112(C), pages 43-51.
- Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2018. "Performance analysis of reverse electrodialysis stacks: Channel geometry and flow rate optimization," Energy, Elsevier, vol. 158(C), pages 427-436.
- Long, Rui & Zhao, Yanan & Luo, Zuoqing & Li, Lei & Liu, Zhichun & Liu, Wei, 2020. "Alternative thermal regenerative osmotic heat engines for low-grade heat harvesting," Energy, Elsevier, vol. 195(C).
- Lion, Simone & Michos, Constantine N. & Vlaskos, Ioannis & Rouaud, Cedric & Taccani, Rodolfo, 2017. "A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 691-708.
- Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Kyoung Hoon Kim & Chul Ho Han & Hyung Jong Ko, 2018. "Comparative Thermodynamic Analysis of Kalina and Kalina Flash Cycles for Utilizing Low-Grade Heat Sources," Energies, MDPI, vol. 11(12), pages 1-14, November.
- Pezzuolo, Alex & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design," Energy, Elsevier, vol. 102(C), pages 605-620.
More about this item
Keywords
Graphic analysis method; Ideal cycle; Heat harvesting; Chemical energy; Gibbs free energy; Electrochemical system;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:191:y:2020:i:c:s036054421932242x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.