IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v368y2024ics0306261924007487.html
   My bibliography  Save this article

A comparative climate-resilient energy design: Wildfire Resilient Load Forecasting Model using multi-factor deep learning methods

Author

Listed:
  • Yang, Weijia
  • Sparrow, Sarah N.
  • Wallom, David C.H.

Abstract

Power grid damage and blackouts are increasing with climate change. Load forecasting methods that integrate climate resilience are therefore essential to facilitate timely and accurate network reconfiguration during periods of extreme stress. Our paper proposes a generalised Wildfire Resilient Load Forecasting Model (WRLFM) to predict electricity load based on operational data of a Distribution Network (DN) in Australia during wildfire seasons in 2015–2020. We demonstrate that load forecasting during wildfire seasons is more challenging than during non-wildfire seasons, motivating an imperative need to improve forecast performance during wildfire seasons. To develop the robust WRLFM, comprehensive comparative analyses were conducted to determine proper Machine Learning (ML) forecast structures and methods for incorporating multiple factors. Bi-directional Gated Recurrent Unit (Bi-GRU) and Vision Transformer (ViT) were selected as they performed the best among all 13 recently trending ML methods. Multi-factors were incorporated to contribute to forecast performance, including input sequence structures, calendar information, flexible correlation-based temperature conditions, and categorical Fire Weather Index (FWI). High-resolution categorical FWI was used to build a forecasting model with climate resilience for the first time, significantly enhancing the average stability of forecast performances by 42%. A sensitivity analysis compared data set patterns and model performances during wildfire and non-wildfire seasons. The improvement rate of load forecasting performance during wildfire seasons was more than two times greater than in non-wildfire seasons. This indicates the significance and effectiveness of applying the WRLFM to improve forecast accuracy under extreme weather risks. Overall, the WRLFM reduces the Mean Absolute Percentage Error (MAPE) of the forecast by 14.37% and 20.86% for Bi-GRU and ViT-based models, respectively, achieving an average forecast MAPE of around 3%.

Suggested Citation

  • Yang, Weijia & Sparrow, Sarah N. & Wallom, David C.H., 2024. "A comparative climate-resilient energy design: Wildfire Resilient Load Forecasting Model using multi-factor deep learning methods," Applied Energy, Elsevier, vol. 368(C).
  • Handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924007487
    DOI: 10.1016/j.apenergy.2024.123365
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924007487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924007487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.