A comparative climate-resilient energy design: Wildfire Resilient Load Forecasting Model using multi-factor deep learning methods
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.123365
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lee, Juyong & Cho, Youngsang, 2022. "National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?," Energy, Elsevier, vol. 239(PD).
- Bu, Xiangya & Wu, Qiuwei & Zhou, Bin & Li, Canbing, 2023. "Hybrid short-term load forecasting using CGAN with CNN and semi-supervised regression," Applied Energy, Elsevier, vol. 338(C).
- Yang, Weijia & Sparrow, Sarah N. & Ashtine, Masaō & Wallom, David C.H. & Morstyn, Thomas, 2022. "Resilient by design: Preventing wildfires and blackouts with microgrids," Applied Energy, Elsevier, vol. 313(C).
- Balduíno César Mateus & Mateus Mendes & José Torres Farinha & Rui Assis & António Marques Cardoso, 2021. "Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press," Energies, MDPI, vol. 14(21), pages 1-21, October.
- Rubasinghe, Osaka & Zhang, Tingze & Zhang, Xinan & Choi, San Shing & Chau, Tat Kei & Chow, Yau & Fernando, Tyrone & Iu, Herbert Ho-Ching, 2023. "Highly accurate peak and valley prediction short-term net load forecasting approach based on decomposition for power systems with high PV penetration," Applied Energy, Elsevier, vol. 333(C).
- Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
- Xiao, Hao & Pei, Wei & Wu, Lei & Ma, Li & Ma, Tengfei & Hua, Weiqi, 2023. "A novel deep learning based probabilistic power flow method for Multi-Microgrids distribution system with incomplete network information," Applied Energy, Elsevier, vol. 335(C).
- Zhang, Hao & Lei, Nuo & Liu, Shang & Fan, Qinhao & Wang, Zhi, 2023. "Data-driven predictive energy consumption minimization strategy for connected plug-in hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
- Yu, Binbin & Li, Jianjing & Liu, Che & Sun, Bo, 2022. "A novel short-term electrical load forecasting framework with intelligent feature engineering," Applied Energy, Elsevier, vol. 327(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Hao & Lei, Nuo & Wang, Zhi, 2024. "Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles," Applied Energy, Elsevier, vol. 369(C).
- Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
- Bujin Shi & Xinbo Zhou & Peilin Li & Wenyu Ma & Nan Pan, 2023. "An IHPO-WNN-Based Federated Learning System for Area-Wide Power Load Forecasting Considering Data Security Protection," Energies, MDPI, vol. 16(19), pages 1-20, October.
- Wu, Han & Liang, Yan & Heng, Jiani, 2023. "Pulse-diagnosis-inspired multi-feature extraction deep network for short-term electricity load forecasting," Applied Energy, Elsevier, vol. 339(C).
- Jonathan Berrisch & Micha{l} Narajewski & Florian Ziel, 2022. "High-Resolution Peak Demand Estimation Using Generalized Additive Models and Deep Neural Networks," Papers 2203.03342, arXiv.org, revised Nov 2022.
- Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
- Salma Hamad Almuhaini & Nahid Sultana, 2023. "Forecasting Long-Term Electricity Consumption in Saudi Arabia Based on Statistical and Machine Learning Algorithms to Enhance Electric Power Supply Management," Energies, MDPI, vol. 16(4), pages 1-28, February.
- Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
- Xu, Huifeng & Hu, Feihu & Liang, Xinhao & Zhao, Guoqing & Abugunmi, Mohammad, 2024. "A framework for electricity load forecasting based on attention mechanism time series depthwise separable convolutional neural network," Energy, Elsevier, vol. 299(C).
- Taorong Jia & Lixiao Yao & Guoqing Yang & Qi He, 2022. "A Short-Term Power Load Forecasting Method of Based on the CEEMDAN-MVO-GRU," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
- Chen, Yujia & Pei, Wei & Ma, Tengfei & Xiao, Hao, 2023. "Asymmetric Nash bargaining model for peer-to-peer energy transactions combined with shared energy storage," Energy, Elsevier, vol. 278(PB).
- Zhang, Pengfei & Ma, Chao & Lian, Jijian & Li, Peiyao & Liu, Lu, 2024. "Medium- and long-term operation optimization of the LCHES-WP hybrid power system considering the settlement rules of the electricity trading market," Applied Energy, Elsevier, vol. 359(C).
- Zhang, Zhonglian & Yang, Xiaohui & Yang, Li & Wang, Zhaojun & Huang, Zezhong & Wang, Xiaopeng & Mei, Linghao, 2023. "Optimal configuration of double carbon energy system considering climate change," Energy, Elsevier, vol. 283(C).
- Chen, Wei & Qin, Haoxuan & Zhu, Qing & Bai, Jianshu & Xie, Ningning & Wang, Yazhou & Zhang, Tong & Xue, Xiaodai, 2024. "Optimal design and performance assessment of a proposed constant power operation mode for the constant volume discharging process of advanced adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 221(C).
- Agbessi Akuété Pierre & Salami Adekunlé Akim & Agbosse Kodjovi Semenyo & Birregah Babiga, 2023. "Peak Electrical Energy Consumption Prediction by ARIMA, LSTM, GRU, ARIMA-LSTM and ARIMA-GRU Approaches," Energies, MDPI, vol. 16(12), pages 1-12, June.
- Lai, Changzhi & Wang, Yu & Fan, Kai & Cai, Qilin & Ye, Qing & Pang, Haoqiang & Wu, Xi, 2022. "An improved forecasting model of short-term electric load of papermaking enterprises for production line optimization," Energy, Elsevier, vol. 245(C).
- Perera, A.T.D. & Zhao, Bingyu & Wang, Zhe & Soga, Kenichi & Hong, Tianzhen, 2023. "Optimal design of microgrids to improve wildfire resilience for vulnerable communities at the wildland-urban interface," Applied Energy, Elsevier, vol. 335(C).
- Sharma, Abhishek & Jain, Sachin Kumar, 2022. "A novel seasonal segmentation approach for day-ahead load forecasting," Energy, Elsevier, vol. 257(C).
- Joohyun Jang & Woonyoung Jeong & Sangmin Kim & Byeongcheon Lee & Miyoung Lee & Jihoon Moon, 2023. "RAID: Robust and Interpretable Daily Peak Load Forecasting via Multiple Deep Neural Networks and Shapley Values," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
- Weihui Xu & Zhaoke Wang & Weishu Wang & Jian Zhao & Miaojia Wang & Qinbao Wang, 2024. "Short-Term Photovoltaic Output Prediction Based on Decomposition and Reconstruction and XGBoost under Two Base Learners," Energies, MDPI, vol. 17(4), pages 1-19, February.
More about this item
Keywords
Climate resilience; Deep learning; Distribution network; Extreme weather; Load forecast;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924007487. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.