IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v374y2024ics0306261924013722.html
   My bibliography  Save this article

Optimal energy efficiency control framework for distributed drive mining truck power system with hybrid energy storage: A vehicle-cloud integration approach

Author

Listed:
  • Tang, Qingsong
  • Hu, Manjiang
  • Bian, Yougang
  • Wang, Yuke
  • Lei, Zhiyong
  • Peng, Xiaoyan
  • Li, Keqiang

Abstract

The four-wheel distributed drive pure electric mining truck, featuring a hybrid energy storage system with battery and supercapacitor, is a promising solution for achieving zero-emission in the transportation process of open-pit mines. The challenge of precisely coordinating and controlling key components such as battery, supercapacitor, and motor to fully unleash their energy-saving potential under complex and harsh off-road conditions is an urgent issue that needs to be addressed. This paper innovatively adopts a new perspective of minimizing global energy transfer chain losses and proposes a mining truck energy efficiency optimization control framework based on vehicle-cloud integration to exploit the energy-saving potential of mining trucks. Furthermore, the proposed control strategy is simulated and compared with the baseline control strategy based on typical mining truck operating conditions. The results indicate that the proposed control strategy effectively maximizes the vehicle's energy efficiency, resulting in an annual reduction of 356,864 RMB in the comprehensive operational cost per mining truck and increasing the energy-saving economic efficiency by 2.7%. These achievements hold promise for propelling the energy efficiency optimization of pure electric mining trucks, which bears significant implications for the construction of a clean and low-carbon open-pit mining transportation system.

Suggested Citation

  • Tang, Qingsong & Hu, Manjiang & Bian, Yougang & Wang, Yuke & Lei, Zhiyong & Peng, Xiaoyan & Li, Keqiang, 2024. "Optimal energy efficiency control framework for distributed drive mining truck power system with hybrid energy storage: A vehicle-cloud integration approach," Applied Energy, Elsevier, vol. 374(C).
  • Handle: RePEc:eee:appene:v:374:y:2024:i:c:s0306261924013722
    DOI: 10.1016/j.apenergy.2024.123989
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924013722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123989?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Junzhe & Xu, Bin & Shen, Yimin & Wu, Jingbo, 2022. "Energy management strategy for battery/supercapacitor hybrid electric city bus based on driving pattern recognition," Energy, Elsevier, vol. 243(C).
    2. Weiwei Yang & Jiejunyi Liang & Jue Yang & Nong Zhang, 2018. "Investigation of a Novel Coaxial Power-Split Hybrid Powertrain for Mining Trucks," Energies, MDPI, vol. 11(1), pages 1-18, January.
    3. Jiskani, Izhar Mithal & Cai, Qingxiang & Zhou, Wei & Ali Shah, Syed Ahsan, 2021. "Green and climate-smart mining: A framework to analyze open-pit mines for cleaner mineral production," Resources Policy, Elsevier, vol. 71(C).
    4. Jichao Liu & Yanyan Liang & Zheng Chen & Hai Yang, 2023. "An ECMS Based on Model Prediction Control for Series Hybrid Electric Mine Trucks," Energies, MDPI, vol. 16(9), pages 1-26, May.
    5. Dindarloo, Saeid R. & Siami-Irdemoosa, Elnaz, 2016. "Determinants of fuel consumption in mining trucks," Energy, Elsevier, vol. 112(C), pages 232-240.
    6. Yan, Qing-dong & Chen, Xiu-qi & Jian, Hong-chao & Wei, Wei & Wang, Wei-da & Wang, Heng, 2022. "Design of a deep inference framework for required power forecasting and predictive control on a hybrid electric mining truck," Energy, Elsevier, vol. 238(PC).
    7. Guo, Ningyuan & Zhang, Xudong & Zou, Yuan & Guo, Lingxiong & Du, Guodong, 2021. "Real-time predictive energy management of plug-in hybrid electric vehicles for coordination of fuel economy and battery degradation," Energy, Elsevier, vol. 214(C).
    8. Hu, Jianjun & Wang, Yangguang & Zou, Lingbo & Wang, Zhouxin, 2023. "Adaptive rule control strategy for composite energy storage fuel cell vehicle based on vehicle operating state recognition," Renewable Energy, Elsevier, vol. 204(C), pages 166-175.
    9. Lars Lindgren & Anders Grauers & Jonas Ranggård & Rikard Mäki, 2022. "Drive-Cycle Simulations of Battery-Electric Large Haul Trucks for Open-Pit Mining with Electric Roads," Energies, MDPI, vol. 15(13), pages 1-19, July.
    10. Feng, Yanbiao & Dong, Zuomin, 2020. "Integrated design and control optimization of fuel cell hybrid mining truck with minimized lifecycle cost," Applied Energy, Elsevier, vol. 270(C).
    11. Xu, Nan & Kong, Yan & Yan, Jinyue & Zhang, Yuanjian & Sui, Yan & Ju, Hao & Liu, Heng & Xu, Zhe, 2022. "Global optimization energy management for multi-energy source vehicles based on “Information layer - Physical layer - Energy layer - Dynamic programming” (IPE-DP)," Applied Energy, Elsevier, vol. 312(C).
    12. Yu, Xiao & Lin, Cheng & Xie, Peng & Liang, Sheng, 2022. "A novel real-time energy management strategy based on Monte Carlo Tree Search for coupled powertrain platform via vehicle-to-cloud connectivity," Energy, Elsevier, vol. 256(C).
    13. Hou, Jun & Song, Ziyou, 2020. "A hierarchical energy management strategy for hybrid energy storage via vehicle-to-cloud connectivity," Applied Energy, Elsevier, vol. 257(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xiao & Lin, Cheng & Tian, Yu & Zhao, Mingjie & Liu, Huimin & Xie, Peng & Zhang, JunZhi, 2023. "Real-time and hierarchical energy management-control framework for electric vehicles with dual-motor powertrain system," Energy, Elsevier, vol. 272(C).
    2. Wang, Qian & Gu, Qinghua & Li, Xuexian & Xiong, Naixue, 2024. "Comprehensive overview: Fleet management drives green and climate-smart open pit mine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Lulu Gao & Dongyue Wang & Chun Jin & Tong Yi, 2022. "Modelling and Performance Analysis of Cyclic Hydro-Pneumatic Energy Storage System Considering the Thermodynamic Characteristics," Energies, MDPI, vol. 15(18), pages 1-19, September.
    4. Guo, Ningyuan & Zhang, Wencan & Li, Junqiu & Chen, Zheng & Li, Jianwei & Sun, Chao, 2024. "Predictive energy management of fuel cell plug-in hybrid electric vehicles: A co-state boundaries-oriented PMP optimization approach," Applied Energy, Elsevier, vol. 362(C).
    5. Chi T. P. Nguyen & Bảo-Huy Nguyễn & Minh C. Ta & João Pedro F. Trovão, 2023. "Dual-Motor Dual-Source High Performance EV: A Comprehensive Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
    6. Liu, Huimin & Lin, Cheng & Yu, Xiao & Tao, Zhenyi & Xu, Jiaqi, 2024. "Variable horizon multivariate driving pattern recognition framework based on vehicle-road two-dimensional information for electric vehicle," Applied Energy, Elsevier, vol. 365(C).
    7. Yu, Xiao & Lin, Cheng & Xie, Peng & Liang, Sheng, 2022. "A novel real-time energy management strategy based on Monte Carlo Tree Search for coupled powertrain platform via vehicle-to-cloud connectivity," Energy, Elsevier, vol. 256(C).
    8. Xue, Jiaqi & Jiao, Xiaohong & Yu, Danmei & Zhang, Yahui, 2023. "Predictive hierarchical eco-driving control involving speed planning and energy management for connected plug-in hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
    9. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    10. Guo, Xiaokai & Yan, Xianguo & Chen, Zhi & Meng, Zhiyu, 2022. "Research on energy management strategy of heavy-duty fuel cell hybrid vehicles based on dueling-double-deep Q-network," Energy, Elsevier, vol. 260(C).
    11. Zhou, Wei & Cai, Xuan & Chen, Yaoqi & Li, Junqiu & Peng, Xiaoyan, 2022. "Decoding the optimal charge depletion behavior in energy domain for predictive energy management of series plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 316(C).
    12. Wu, Yue & Huang, Zhiwu & Hofmann, Heath & Liu, Yongjie & Huang, Jiahao & Hu, Xiaosong & Peng, Jun & Song, Ziyou, 2022. "Hierarchical predictive control for electric vehicles with hybrid energy storage system under vehicle-following scenarios," Energy, Elsevier, vol. 251(C).
    13. Rajesh K. Ahluwalia & Xiaohua Wang & Dionissios D. Papadias & Andrew G. Star, 2022. "Performance and Total Cost of Ownership of a Fuel Cell Hybrid Mining Truck," Energies, MDPI, vol. 16(1), pages 1-17, December.
    14. Liu, Yonggang & Wu, Yitao & Wang, Xiangyu & Li, Liang & Zhang, Yuanjian & Chen, Zheng, 2023. "Energy management for hybrid electric vehicles based on imitation reinforcement learning," Energy, Elsevier, vol. 263(PC).
    15. Zhang, Hao & Fan, Qinhao & Liu, Shang & Li, Shengbo Eben & Huang, Jin & Wang, Zhi, 2021. "Hierarchical energy management strategy for plug-in hybrid electric powertrain integrated with dual-mode combustion engine," Applied Energy, Elsevier, vol. 304(C).
    16. Chen, Xu & Li, Mince & Chen, Zonghai, 2023. "Meta rule-based energy management strategy for battery/supercapacitor hybrid electric vehicles," Energy, Elsevier, vol. 285(C).
    17. Aihua Tang & Lin Yang & Tao Zeng & Quanqing Yu, 2022. "Cascade Control Method of Sliding Mode and PID for PEMFC Air Supply System," Energies, MDPI, vol. 16(1), pages 1-13, December.
    18. Zhigao Liu & Ruixin Zhang & Jiayi Ma & Wenyu Zhang & Lin Li, 2023. "Analysis and Prediction of the Meteorological Characteristics of Dust Concentrations in Open-Pit Mines," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    19. Tomasz Osipowicz & Wawrzyniec Gołębiewski & Wojciech Lewicki & Adam Koniuszy & Karol Franciszek Abramek & Konrad Prajwowski & Oleh Klyus & Dominik Gałdyński, 2024. "Analysis of Energy Efficiency Parameters of a Hybrid Vehicle Powered by Fuel with a Liquid Catalyst," Energies, MDPI, vol. 17(20), pages 1-20, October.
    20. Sanghyun Yun & Jinwon Yun & Jaeyoung Han, 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using Simscape TM," Energies, MDPI, vol. 16(24), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:374:y:2024:i:c:s0306261924013722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.