IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223018157.html
   My bibliography  Save this article

An improved differential evolution using self-adaptable cosine similarity for economic emission dispatch

Author

Listed:
  • Zhang, Qiang
  • Zou, Dexuan
  • Duan, Na

Abstract

As increasing demand of electric energy and deterioration of environment pollution in global, economic emission dispatch (EED) problem has become one of the most important problems in power systems. In order to improve the quality of life and further reduce emissions, plug-in electric vehicle (PEV) has become a popular transportation. But the frequent and random charging of PEVs will bring potential risk that undermines the stability of the power grid. Therefore, dynamic economic emission dispatch considering plug-in electric vehicles (DEED-PEV) as a new hot-spot issue has gradually become more and more important in the power system. In this paper, an improved differential evolution using self-adaptable cosine similarity (DE-SCS) is proposed for EED and DEED-PEV problems. First, a dynamic cosine similarity calculated replaces the F of the differential evolution algorithm (DE) to scale the perturbation by self-adaptability. Second, a result-driven selection operation for multiple mutation strategies is implemented in each iteration. Third, a modified environment selection changes the usual way to ranking in the vectors pool during the update on Pareto front. Last, an evaluation mechanism that involves two series of solution sets and three types of comparing approaches is conducted on our proposed algorithms in the experiment. DE-SCS improves the equilibrium between exploration and exploration of the DE. The cosine similarity makes the convergence more self-adaptive. The modified environment selection maximizes the worth of previous generation vectors and brings the randomness into the next iteration. DE-SCS matching various environmental selection are tested on twelve unconstrained multi-objectives problems, six EED cases and six DEED-PEV cases containing charging load, discharging power, valley filling, and peak shaving. Experimental results confirm that DE-SCS is capable of obtaining such excellent and feasible solutions that it has good potential to deal with EED and DEED-PEV problems.

Suggested Citation

  • Zhang, Qiang & Zou, Dexuan & Duan, Na, 2023. "An improved differential evolution using self-adaptable cosine similarity for economic emission dispatch," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018157
    DOI: 10.1016/j.energy.2023.128421
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223018157
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128421?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Xiongmin & Li, Zhengshuo & Xu, Xuancong & Zeng, Zhijun & Jiang, Tianhong & Fang, Wenrui & Meng, Anbo, 2022. "Multi-objective economic emission dispatch based on an extended crisscross search optimization algorithm," Energy, Elsevier, vol. 244(PA).
    2. Ma, Haiping & Yang, Zhile & You, Pengcheng & Fei, Minrui, 2017. "Multi-objective biogeography-based optimization for dynamic economic emission load dispatch considering plug-in electric vehicles charging," Energy, Elsevier, vol. 135(C), pages 101-111.
    3. Hao, Wen-Kuo & Wang, Jie-Sheng & Li, Xu-Dong & Song, Hao-Ming & Bao, Yin-Yin, 2022. "Probability distribution arithmetic optimization algorithm based on variable order penalty functions to solve combined economic emission dispatch problem," Applied Energy, Elsevier, vol. 316(C).
    4. Panigrahi, B.K. & Ravikumar Pandi, V. & Das, Sanjoy & Das, Swagatam, 2010. "Multiobjective fuzzy dominance based bacterial foraging algorithm to solve economic emission dispatch problem," Energy, Elsevier, vol. 35(12), pages 4761-4770.
    5. Jubril, A.M. & Olaniyan, O.A. & Komolafe, O.A. & Ogunbona, P.O., 2014. "Economic-emission dispatch problem: A semi-definite programming approach," Applied Energy, Elsevier, vol. 134(C), pages 446-455.
    6. Yu, Xiaobing & Duan, Yuchen & Luo, Wenguan, 2022. "A knee-guided algorithm to solve multi-objective economic emission dispatch problem," Energy, Elsevier, vol. 259(C).
    7. Al-Bahrani, Loau Tawfak & Horan, Ben & Seyedmahmoudian, Mehdi & Stojcevski, Alex, 2020. "Dynamic economic emission dispatch with load dema nd management for the load demand of electric vehicles during crest shaving and valley filling in smart cities environment," Energy, Elsevier, vol. 195(C).
    8. Panpan Mei & Lianghong Wu & Hongqiang Zhang & Zhenzu Liu, 2019. "A Hybrid Multi-Objective Crisscross Optimization for Dynamic Economic/Emission Dispatch Considering Plug-In Electric Vehicles Penetration," Energies, MDPI, vol. 12(20), pages 1-21, October.
    9. Nazari-Heris, Morteza & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Siano, Pierluigi, 2020. "Optimal generation scheduling of large-scale multi-zone combined heat and power systems," Energy, Elsevier, vol. 210(C).
    10. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Seifi, Alireza, 2013. "A new algorithm for combined heat and power dynamic economic dispatch considering valve-point effects," Energy, Elsevier, vol. 52(C), pages 320-332.
    11. Amiri, M. & Khanmohammadi, S. & Badamchizadeh, M.A., 2018. "Floating search space: A new idea for efficient solving the Economic and emission dispatch problem," Energy, Elsevier, vol. 158(C), pages 564-579.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. SeyedGarmroudi, SeyedDavoud & Kayakutlu, Gulgun & Kayalica, M. Ozgur & Çolak, Üner, 2024. "Improved Pelican optimization algorithm for solving load dispatch problems," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. SeyedGarmroudi, SeyedDavoud & Kayakutlu, Gulgun & Kayalica, M. Ozgur & Çolak, Üner, 2024. "Improved Pelican optimization algorithm for solving load dispatch problems," Energy, Elsevier, vol. 289(C).
    2. Yu, Xiaobing & Duan, Yuchen & Luo, Wenguan, 2022. "A knee-guided algorithm to solve multi-objective economic emission dispatch problem," Energy, Elsevier, vol. 259(C).
    3. Li, Chaoshun & Wang, Wenxiao & Chen, Deshu, 2019. "Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer," Energy, Elsevier, vol. 171(C), pages 241-255.
    4. Arul, R. & Velusami, S. & Ravi, G., 2015. "A new algorithm for combined dynamic economic emission dispatch with security constraints," Energy, Elsevier, vol. 79(C), pages 496-511.
    5. Shin, Hansol & Kim, Tae Hyun & Kim, Hyoungtae & Lee, Sungwoo & Kim, Wook, 2019. "Environmental shutdown of coal-fired generators for greenhouse gas reduction: A case study of South Korea," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Ghasemi, Mojtaba & Aghaei, Jamshid & Akbari, Ebrahim & Ghavidel, Sahand & Li, Li, 2016. "A differential evolution particle swarm optimizer for various types of multi-area economic dispatch problems," Energy, Elsevier, vol. 107(C), pages 182-195.
    7. Jabari, Farkhondeh & Jabari, Hamid & Mohammadi-ivatloo, Behnam & Ghafouri, Jafar, 2019. "Optimal short-term coordination of water-heat-power nexus incorporating plug-in electric vehicles and real-time demand response programs," Energy, Elsevier, vol. 174(C), pages 708-723.
    8. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    9. Yang, Linfeng & Li, Wei & Xu, Yan & Zhang, Cuo & Chen, Shifei, 2021. "Two novel locally ideal three-period unit commitment formulations in power systems," Applied Energy, Elsevier, vol. 284(C).
    10. Sheng, Wanxing & Li, Rui & Yan, Tao & Tseng, Ming-Lang & Lou, Jiale & Li, Lingling, 2023. "A hybrid dynamic economics emissions dispatch model: Distributed renewable power systems based on improved COOT optimization algorithm," Renewable Energy, Elsevier, vol. 204(C), pages 493-506.
    11. Liu, Zhi-Feng & Li, Ling-Ling & Liu, Yu-Wei & Liu, Jia-Qi & Li, Heng-Yi & Shen, Qiang, 2021. "Dynamic economic emission dispatch considering renewable energy generation: A novel multi-objective optimization approach," Energy, Elsevier, vol. 235(C).
    12. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    13. Wei, Wei & Liu, Feng & Wang, Jianhui & Chen, Laijun & Mei, Shengwei & Yuan, Tiejiang, 2016. "Robust environmental-economic dispatch incorporating wind power generation and carbon capture plants," Applied Energy, Elsevier, vol. 183(C), pages 674-684.
    14. Zare, Mohsen & Niknam, Taher, 2013. "A new multi-objective for environmental and economic management of Volt/Var Control considering renewable energy resources," Energy, Elsevier, vol. 55(C), pages 236-252.
    15. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    16. Azizipanah-Abarghooee, Rasoul & Niknam, Taher & Roosta, Alireza & Malekpour, Ahmad Reza & Zare, Mohsen, 2012. "Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method," Energy, Elsevier, vol. 37(1), pages 322-335.
    17. Zou, Dexuan & Gong, Dunwei & Ouyang, Haibin, 2023. "The dynamic economic emission dispatch of the combined heat and power system integrated with a wind farm and a photovoltaic plant," Applied Energy, Elsevier, vol. 351(C).
    18. Ma, Sining & Guo, Siyue & Zheng, Dingqian & Chang, Shiyan & Zhang, Xiliang, 2021. "Roadmap towards clean and low carbon heating to 2035: A provincial analysis in northern China," Energy, Elsevier, vol. 225(C).
    19. Kheshti, Mostafa & Ding, Lei & Ma, Shicong & Zhao, Bing, 2018. "Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems," Renewable Energy, Elsevier, vol. 125(C), pages 1021-1037.
    20. Xiaojiao Tong & Hailin Sun & Xiao Luo & Quanguo Zheng, 2018. "Distributionally robust chance constrained optimization for economic dispatch in renewable energy integrated systems," Journal of Global Optimization, Springer, vol. 70(1), pages 131-158, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.