IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v134y2014icp446-455.html
   My bibliography  Save this article

Economic-emission dispatch problem: A semi-definite programming approach

Author

Listed:
  • Jubril, A.M.
  • Olaniyan, O.A.
  • Komolafe, O.A.
  • Ogunbona, P.O.

Abstract

A semi-definite programming (SDP) formulation of the multi-objective economic-emission dispatch problem is presented. The fuel cost and emission functions are represented by high order polynomial functions and this was shown to be a more accurate representation of the economic-emission dispatch (EED) problem. Furthermore, the polynomial functions of both objective functions are aggregated into a single objective function using the weighted sum approach. This thus reduces the problem to a standard polynomial optimization problem which was formulated as a hierarchy of semi-definite relaxation problems. The resulting SDP problem was then solved at different degrees of approximation. The performance of the proposed approach was evaluated by conducting experiments on the standard 6-unit and the 13-unit IEEE test systems. The results obtained were compared with those reported in the literature and indicated that SDP has inherently good convergence property and provides better exploration of the Pareto front.

Suggested Citation

  • Jubril, A.M. & Olaniyan, O.A. & Komolafe, O.A. & Ogunbona, P.O., 2014. "Economic-emission dispatch problem: A semi-definite programming approach," Applied Energy, Elsevier, vol. 134(C), pages 446-455.
  • Handle: RePEc:eee:appene:v:134:y:2014:i:c:p:446-455
    DOI: 10.1016/j.apenergy.2014.08.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914008277
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.08.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2010. "Solving infinite-dimensional optimization problems by polynomial approximation," LIDAM Discussion Papers CORE 2010029, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zou, Dexuan & Li, Steven & Wang, Gai-Ge & Li, Zongyan & Ouyang, Haibin, 2016. "An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects," Applied Energy, Elsevier, vol. 181(C), pages 375-390.
    2. Lin, Yashen & Johnson, Jeremiah X. & Mathieu, Johanna L., 2016. "Emissions impacts of using energy storage for power system reserves," Applied Energy, Elsevier, vol. 168(C), pages 444-456.
    3. Breen, M. & Upton, J. & Murphy, M.D., 2020. "Photovoltaic systems on dairy farms: Financial and renewable multi-objective optimization (FARMOO) analysis," Applied Energy, Elsevier, vol. 278(C).
    4. Wei, Wei & Liu, Feng & Wang, Jianhui & Chen, Laijun & Mei, Shengwei & Yuan, Tiejiang, 2016. "Robust environmental-economic dispatch incorporating wind power generation and carbon capture plants," Applied Energy, Elsevier, vol. 183(C), pages 674-684.
    5. Yuan, Zhao & Wogrin, Sonja & Hesamzadeh, Mohammad Reza, 2017. "Towards the Power Synergy Hub (PSHub): Coordinating the energy dispatch of super grid by modified Benders decomposition," Applied Energy, Elsevier, vol. 205(C), pages 1419-1434.
    6. Jun Yang & Xin Feng & Yufei Tang & Jun Yan & Haibo He & Chao Luo, 2015. "A Power System Optimal Dispatch Strategy Considering the Flow of Carbon Emissions and Large Consumers," Energies, MDPI, vol. 8(9), pages 1-20, August.
    7. Jiangtao Yu & Chang-Hwan Kim & Abdul Wadood & Tahir Khurshiad & Sang-Bong Rhee, 2018. "A Novel Multi-Population Based Chaotic JAYA Algorithm with Application in Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 11(8), pages 1-25, July.
    8. Breen, M. & Murphy, M.D. & Upton, J., 2019. "Development of a dairy multi-objective optimization (DAIRYMOO) method for economic and environmental optimization of dairy farms," Applied Energy, Elsevier, vol. 242(C), pages 1697-1711.
    9. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    10. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Ding, Fei & Wu, Jianzhong, 2018. "A centralized-based method to determine the local voltage control strategies of distributed generator operation in active distribution networks," Applied Energy, Elsevier, vol. 228(C), pages 2024-2036.
    11. Ismail Marouani & Tawfik Guesmi & Hsan Hadj Abdallah & Badr M. Alshammari & Khalid Alqunun & Ahmed S. Alshammari & Salem Rahmani, 2022. "Combined Economic Emission Dispatch with and without Consideration of PV and Wind Energy by Using Various Optimization Techniques: A Review," Energies, MDPI, vol. 15(12), pages 1-35, June.
    12. Yuan, Zhao & Hesamzadeh, Mohammad Reza, 2017. "Hierarchical coordination of TSO-DSO economic dispatch considering large-scale integration of distributed energy resources," Applied Energy, Elsevier, vol. 195(C), pages 600-615.
    13. Kheshti, Mostafa & Ding, Lei & Ma, Shicong & Zhao, Bing, 2018. "Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems," Renewable Energy, Elsevier, vol. 125(C), pages 1021-1037.
    14. Shin, Hansol & Kim, Tae Hyun & Kim, Hyoungtae & Lee, Sungwoo & Kim, Wook, 2019. "Environmental shutdown of coal-fired generators for greenhouse gas reduction: A case study of South Korea," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Zhang, Xian & Wang, Huaizhi & Peng, Jian-chun & Liu, Yitao & Wang, Guibin & Jiang, Hui, 2018. "GPNBI inspired MOSDE for electric power dispatch considering wind energy penetration," Energy, Elsevier, vol. 144(C), pages 404-419.
    16. Yang, Linfeng & Li, Wei & Xu, Yan & Zhang, Cuo & Chen, Shifei, 2021. "Two novel locally ideal three-period unit commitment formulations in power systems," Applied Energy, Elsevier, vol. 284(C).
    17. Xinlin Xu & Zhongbo Hu & Qinghua Su & Zenggang Xiong, 2018. "Multiobjective Collective Decision Optimization Algorithm for Economic Emission Dispatch Problem," Complexity, Hindawi, vol. 2018, pages 1-20, November.
    18. Zhang, Qiang & Zou, Dexuan & Duan, Na, 2023. "An improved differential evolution using self-adaptable cosine similarity for economic emission dispatch," Energy, Elsevier, vol. 283(C).
    19. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristina Rognlien Dahl, 2019. "Management of a hydropower system via convex duality," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(1), pages 43-71, February.
    2. Kristina Rognlien Dahl, 2019. "A convex duality approach for pricing contingent claims under partial information and short selling constraints," Papers 1902.10492, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:134:y:2014:i:c:p:446-455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.