IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i12p4761-4770.html
   My bibliography  Save this article

Multiobjective fuzzy dominance based bacterial foraging algorithm to solve economic emission dispatch problem

Author

Listed:
  • Panigrahi, B.K.
  • Ravikumar Pandi, V.
  • Das, Sanjoy
  • Das, Swagatam

Abstract

This paper proposes the bacterial foraging meta-heuristic algorithm for multiobjective optimization. In this multiobjective bacterial foraging optimization technique, the most recent bacterial locations are obtained by chemotaxis process. Next, Fuzzy dominance based sorting procedure is used here to select the Pareto optimal front (POF). To test the suitability of our proposed algorithm we have considered a highly constrained optimization problem namely economic/emission dispatch. Now-a-days environmental concern that arises due to the operation of fossil fuel fired electric generators and global warming, transforms the classical economic load dispatch problem into multiobjective environmental/economic dispatch (EED) problem. In the proposed work, we have considered the standard IEEE 30-bus six-generator test system and the results obtained by proposed algorithm are compared with the other recently reported results. Simulation results demonstrate that the proposed algorithm is a capable candidate in solving the multiobjective economic emission load dispatch problem.

Suggested Citation

  • Panigrahi, B.K. & Ravikumar Pandi, V. & Das, Sanjoy & Das, Swagatam, 2010. "Multiobjective fuzzy dominance based bacterial foraging algorithm to solve economic emission dispatch problem," Energy, Elsevier, vol. 35(12), pages 4761-4770.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:12:p:4761-4770
    DOI: 10.1016/j.energy.2010.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210004937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Liu & K.M. Passino, 2002. "Biomimicry of Social Foraging Bacteria for Distributed Optimization: Models, Principles, and Emergent Behaviors," Journal of Optimization Theory and Applications, Springer, vol. 115(3), pages 603-628, December.
    2. Niknam, Taher & Mojarrad, Hassan Doagou & Nayeripour, Majid, 2010. "A new fuzzy adaptive particle swarm optimization for non-smooth economic dispatch," Energy, Elsevier, vol. 35(4), pages 1764-1778.
    3. Yuan, Xiaohui & Su, Anjun & Yuan, Yanbin & Nie, Hao & Wang, Liang, 2009. "An improved PSO for dynamic load dispatch of generators with valve-point effects," Energy, Elsevier, vol. 34(1), pages 67-74.
    4. Fesanghary, M. & Ardehali, M.M., 2009. "A novel meta-heuristic optimization methodology for solving various types of economic dispatch problem," Energy, Elsevier, vol. 34(6), pages 757-766.
    5. Esmaili, Masoud & Shayanfar, Heidar Ali & Amjady, Nima, 2009. "Multi-objective congestion management incorporating voltage and transient stabilities," Energy, Elsevier, vol. 34(9), pages 1401-1412.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arul, R. & Velusami, S. & Ravi, G., 2015. "A new algorithm for combined dynamic economic emission dispatch with security constraints," Energy, Elsevier, vol. 79(C), pages 496-511.
    2. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    3. Naz, Muhammad Naveed & Mushtaq, Muhammad Irfan & Naeem, Muhammad & Iqbal, Muhammad & Altaf, Muhammad Waseem & Haneef, Muhammad, 2017. "Multicriteria decision making for resource management in renewable energy assisted microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 323-341.
    4. Secui, Dinu Calin, 2015. "The chaotic global best artificial bee colony algorithm for the multi-area economic/emission dispatch," Energy, Elsevier, vol. 93(P2), pages 2518-2545.
    5. Niknam, Taher & Mojarrad, Hasan Doagou & Meymand, Hamed Zeinoddini & Firouzi, Bahman Bahmani, 2011. "A new honey bee mating optimization algorithm for non-smooth economic dispatch," Energy, Elsevier, vol. 36(2), pages 896-908.
    6. de Athayde Costa e Silva, Marsil & Klein, Carlos Eduardo & Mariani, Viviana Cocco & dos Santos Coelho, Leandro, 2013. "Multiobjective scatter search approach with new combination scheme applied to solve environmental/economic dispatch problem," Energy, Elsevier, vol. 53(C), pages 14-21.
    7. Panda, Ambarish & Tripathy, M., 2015. "Security constrained optimal power flow solution of wind-thermal generation system using modified bacteria foraging algorithm," Energy, Elsevier, vol. 93(P1), pages 816-827.
    8. Ghasemi, Mojtaba & Aghaei, Jamshid & Akbari, Ebrahim & Ghavidel, Sahand & Li, Li, 2016. "A differential evolution particle swarm optimizer for various types of multi-area economic dispatch problems," Energy, Elsevier, vol. 107(C), pages 182-195.
    9. Özyön, Serdar & Temurtaş, Hasan & Durmuş, Burhanettin & Kuvat, Gültekin, 2012. "Charged system search algorithm for emission constrained economic power dispatch problem," Energy, Elsevier, vol. 46(1), pages 420-430.
    10. Zare, Mohsen & Niknam, Taher, 2013. "A new multi-objective for environmental and economic management of Volt/Var Control considering renewable energy resources," Energy, Elsevier, vol. 55(C), pages 236-252.
    11. Ghasemi, Mojtaba & Ghavidel, Sahand & Ghanbarian, Mohammad Mehdi & Gharibzadeh, Masihallah & Azizi Vahed, Ali, 2014. "Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm," Energy, Elsevier, vol. 78(C), pages 276-289.
    12. Azizipanah-Abarghooee, Rasoul & Niknam, Taher & Roosta, Alireza & Malekpour, Ahmad Reza & Zare, Mohsen, 2012. "Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method," Energy, Elsevier, vol. 37(1), pages 322-335.
    13. Xiaojiao Tong & Hailin Sun & Xiao Luo & Quanguo Zheng, 2018. "Distributionally robust chance constrained optimization for economic dispatch in renewable energy integrated systems," Journal of Global Optimization, Springer, vol. 70(1), pages 131-158, January.
    14. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Azizipanah-Abarghooee, Rasoul, 2013. "An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties," Energy, Elsevier, vol. 50(C), pages 232-244.
    15. Basu, M., 2014. "Fuel constrained economic emission dispatch using nondominated sorting genetic algorithm-II," Energy, Elsevier, vol. 78(C), pages 649-664.
    16. Li, Y.Z. & Wu, Q.H. & Li, M.S. & Zhan, J.P., 2014. "Mean-variance model for power system economic dispatch with wind power integrated," Energy, Elsevier, vol. 72(C), pages 510-520.
    17. Zhang, Qiang & Zou, Dexuan & Duan, Na, 2023. "An improved differential evolution using self-adaptable cosine similarity for economic emission dispatch," Energy, Elsevier, vol. 283(C).
    18. Narimani, Mohammad Rasoul & Azizipanah-Abarghooee, Rasoul & Zoghdar-Moghadam-Shahrekohne, Behrouz & Gholami, Kayvan, 2013. "A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type," Energy, Elsevier, vol. 49(C), pages 119-136.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints," Energy, Elsevier, vol. 47(1), pages 451-464.
    2. Yaşar, Celal & Özyön, Serdar, 2011. "A new hybrid approach for nonconvex economic dispatch problem with valve-point effect," Energy, Elsevier, vol. 36(10), pages 5838-5845.
    3. de Athayde Costa e Silva, Marsil & Klein, Carlos Eduardo & Mariani, Viviana Cocco & dos Santos Coelho, Leandro, 2013. "Multiobjective scatter search approach with new combination scheme applied to solve environmental/economic dispatch problem," Energy, Elsevier, vol. 53(C), pages 14-21.
    4. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    5. Narang, Nitin & Dhillon, J.S. & Kothari, D.P., 2012. "Multiobjective fixed head hydrothermal scheduling using integrated predator-prey optimization and Powell search method," Energy, Elsevier, vol. 47(1), pages 237-252.
    6. Alsumait, J.S. & Sykulski, J.K. & Al-Othman, A.K., 2010. "A hybrid GA-PS-SQP method to solve power system valve-point economic dispatch problems," Applied Energy, Elsevier, vol. 87(5), pages 1773-1781, May.
    7. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Seifi, Alireza, 2013. "A new algorithm for combined heat and power dynamic economic dispatch considering valve-point effects," Energy, Elsevier, vol. 52(C), pages 320-332.
    8. Nafar, M. & Gharehpetian, G.B. & Niknam, T., 2011. "Improvement of estimation of surge arrester parameters by using Modified Particle Swarm Optimization," Energy, Elsevier, vol. 36(8), pages 4848-4854.
    9. Mohammadian, M. & Lorestani, A. & Ardehali, M.M., 2018. "Optimization of single and multi-areas economic dispatch problems based on evolutionary particle swarm optimization algorithm," Energy, Elsevier, vol. 161(C), pages 710-724.
    10. Secui, Dinu Calin, 2016. "A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 113(C), pages 366-384.
    11. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Azizipanah-Abarghooee, Rasoul, 2013. "An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties," Energy, Elsevier, vol. 50(C), pages 232-244.
    12. Guojiang Xiong & Jing Zhang & Xufeng Yuan & Dongyuan Shi & Yu He & Yao Yao & Gonggui Chen, 2018. "A Novel Method for Economic Dispatch with Across Neighborhood Search: A Case Study in a Provincial Power Grid, China," Complexity, Hindawi, vol. 2018, pages 1-18, November.
    13. Cai, Jiejin & Li, Qiong & Li, Lixiang & Peng, Haipeng & Yang, Yixian, 2012. "A hybrid FCASO-SQP method for solving the economic dispatch problems with valve-point effects," Energy, Elsevier, vol. 38(1), pages 346-353.
    14. Meng, Anbo & Hu, Hanwu & Yin, Hao & Peng, Xiangang & Guo, Zhuangzhi, 2015. "Crisscross optimization algorithm for large-scale dynamic economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 93(P2), pages 2175-2190.
    15. Xiong, Guojiang & Shi, Dongyuan & Duan, Xianzhong, 2013. "Multi-strategy ensemble biogeography-based optimization for economic dispatch problems," Applied Energy, Elsevier, vol. 111(C), pages 801-811.
    16. Secui, Dinu Calin, 2015. "The chaotic global best artificial bee colony algorithm for the multi-area economic/emission dispatch," Energy, Elsevier, vol. 93(P2), pages 2518-2545.
    17. Niknam, Taher & Mojarrad, Hasan Doagou & Meymand, Hamed Zeinoddini & Firouzi, Bahman Bahmani, 2011. "A new honey bee mating optimization algorithm for non-smooth economic dispatch," Energy, Elsevier, vol. 36(2), pages 896-908.
    18. Vaisakh, K. & Srinivas, L.R., 2010. "A genetic evolving ant direction DE for OPF with non-smooth cost functions and statistical analysis," Energy, Elsevier, vol. 35(8), pages 3155-3171.
    19. Iqbal, M. & Azam, M. & Naeem, M. & Khwaja, A.S. & Anpalagan, A., 2014. "Optimization classification, algorithms and tools for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 640-654.
    20. Mohammadi-ivatloo, Behnam & Rabiee, Abbas & Soroudi, Alireza & Ehsan, Mehdi, 2012. "Imperialist competitive algorithm for solving non-convex dynamic economic power dispatch," Energy, Elsevier, vol. 44(1), pages 228-240.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:12:p:4761-4770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.