IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223023526.html
   My bibliography  Save this article

Coal-derived synthetic natural gas as an alternative energy carrier for application to produce power --- comparison of integrated vs. non-integrated processes

Author

Listed:
  • Chyou, Yau-Pin
  • Chiu, Hsiu-Mei
  • Chen, Po-Chuang
  • Chien, Hsiu-Yun
  • Wang, Ting

Abstract

This work addresses clean utilization of coal through thermo-chemical processes (i.e., gasification & methanation) that convert solid carbonaceous feedstock to gaseous fuel for power generation, which features potential advantages for environmental benignity and energy security. It would be beneficial to convert coal to synthetic natural gas (SNG) that can feed the combined cycle units in the regions like Taiwan where natural gas (NG) is imported, which would help stabilize the price of electricity and alleviate the energy security concern. The objective of this study is to investigate the performance as well as the pros and cons between integrated and non-integrated SNG plants. The characteristics of power and chemical plants differs in various aspects, thus the concept of non-integrated approach to produce SNG and power offers better system resilience, availability and market flexibility at the expense of reduced efficiency. Fuel switch strategy would be one of the key pillars for the pathway toward Net-Zero Emissions (NZE) by 2050. Alternative energy carriers (AECs), generally synthesized from conversion of other energy sources, may provide solutions to decarbonization and low-emission environment. In summary, the thermo-chemical conversion processes studied in the present work address the core issues in clean and efficient utilization of carbonaceous resources.

Suggested Citation

  • Chyou, Yau-Pin & Chiu, Hsiu-Mei & Chen, Po-Chuang & Chien, Hsiu-Yun & Wang, Ting, 2023. "Coal-derived synthetic natural gas as an alternative energy carrier for application to produce power --- comparison of integrated vs. non-integrated processes," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023526
    DOI: 10.1016/j.energy.2023.128958
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223023526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Lin & He, Yangdong & Li, Luling & Lv, Liping & He, Jingling, 2018. "Thermodynamic assessment of SNG and power polygeneration with the goal of zero CO2 emission," Energy, Elsevier, vol. 149(C), pages 34-46.
    2. Lee, Jae Chul & Lee, Hyeon Hui & Joo, Yong Jin & Lee, Chang Ha & Oh, Min, 2014. "Process simulation and thermodynamic analysis of an IGCC (integrated gasification combined cycle) plant with an entrained coal gasifier," Energy, Elsevier, vol. 64(C), pages 58-68.
    3. Li, Sheng & Ji, Xiaozhou & Zhang, Xiaosong & Gao, Lin & Jin, Hongguang, 2014. "Coal to SNG: Technical progress, modeling and system optimization through exergy analysis," Applied Energy, Elsevier, vol. 136(C), pages 98-109.
    4. Gabriel Talero & Yasuki Kansha, 2022. "Simulation of the Steam Gasification of Japanese Waste Wood in an Indirectly Heated Downdraft Reactor Using PRO/II™: Numerical Comparison of Stoichiometric and Kinetic Models," Energies, MDPI, vol. 15(12), pages 1-19, June.
    5. Yang, Sheng & Qian, Yu & Ma, Donghui & Wang, Yifan & Yang, Siyu, 2017. "BGL gasifier for coal-to-SNG: A comparative techno-economic analysis," Energy, Elsevier, vol. 133(C), pages 158-170.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Junnian & Wang, Na, 2020. "Exploring avoidable carbon emissions by reducing exergy destruction based on advanced exergy analysis: A case study," Energy, Elsevier, vol. 206(C).
    2. Timo Blumberg & Max Sorgenfrei & George Tsatsaronis, 2015. "Design and Assessment of an IGCC Concept with CO 2 Capture for the Co-Generation of Electricity and Substitute Natural Gas," Sustainability, MDPI, vol. 7(12), pages 1-13, December.
    3. Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
    4. Ammar Bany Ata & Peter Maximilian Seufert & Christian Heinze & Falah Alobaid & Bernd Epple, 2021. "Optimization of Integrated Gasification Combined-Cycle Power Plant for Polygeneration of Power and Chemicals," Energies, MDPI, vol. 14(21), pages 1-24, November.
    5. Xiang, Dong & Jin, Tong & Lei, Xinru & Liu, Shuai & Jiang, Yong & Dong, Zhongbing & Tao, Quanbao & Cao, Yan, 2018. "The high efficient synthesis of natural gas from a joint-feedstock of coke-oven gas and pulverized coke via a chemical looping combustion scheme," Applied Energy, Elsevier, vol. 212(C), pages 944-954.
    6. Wijayanta, Agung Tri & Aziz, Muhammad, 2019. "Ammonia production from algae via integrated hydrothermal gasification, chemical looping, N2 production, and NH3 synthesis," Energy, Elsevier, vol. 174(C), pages 331-338.
    7. Lee, Woo-Sung & Lee, Jae-Cheol & Oh, Hyun-Taek & Baek, Seung-Won & Oh, Min & Lee, Chang-Ha, 2017. "Performance, economic and exergy analyses of carbon capture processes for a 300 MW class integrated gasification combined cycle power plant," Energy, Elsevier, vol. 134(C), pages 731-742.
    8. Hossam A. Gabbar & Mohamed Aboughaly & Stefano Russo, 2017. "Conceptual Design and Energy Analysis of Integrated Combined Cycle Gasification System," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    9. Fan, Junming & Hong, Hui & Jin, Hongguang, 2018. "Biomass and coal co-feed power and SNG polygeneration with chemical looping combustion to reduce carbon footprint for sustainable energy development: Process simulation and thermodynamic assessment," Renewable Energy, Elsevier, vol. 125(C), pages 260-269.
    10. Zhang, Ji & Liang, Yanna & Harpalani, Satya, 2016. "Optimization of methane production from bituminous coal through biogasification," Applied Energy, Elsevier, vol. 183(C), pages 31-42.
    11. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Elbaz, A.M. & khateeb, A.A. & Roberts, W.L., 2018. "PM from the combustion of heavy fuel oils," Energy, Elsevier, vol. 152(C), pages 455-465.
    13. Bassano, Claudia & Deiana, Paolo & Vilardi, Giorgio & Verdone, Nicola, 2020. "Modeling and economic evaluation of carbon capture and storage technologies integrated into synthetic natural gas and power-to-gas plants," Applied Energy, Elsevier, vol. 263(C).
    14. Li, Sheng & Gao, Lin & Jin, Hongguang, 2017. "Realizing low life cycle energy use and GHG emissions in coal based polygeneration with CO2 capture," Applied Energy, Elsevier, vol. 194(C), pages 161-171.
    15. Zhou, Hua & Xie, Taili & You, Fengqi, 2018. "On-line simulation and optimization of a commercial-scale shell entrained-flow gasifier using a novel dynamic reduced order model," Energy, Elsevier, vol. 149(C), pages 516-534.
    16. Xiang, Yangyang & Zhou, Jingsong & Lin, Bowen & Xue, Xiaoao & Tian, Xingtao & Luo, Zhongyang, 2015. "Exergetic evaluation of renewable light olefins production from biomass via synthetic methanol," Applied Energy, Elsevier, vol. 157(C), pages 499-507.
    17. Fang, Neng & Li, Zhengqi & Xie, Cheng & Liu, Shuxuan & Zeng, Lingyan & Chen, Zhichao & Zhang, Bin, 2020. "The application of fly ash gasification for purifying the raw syngas in an industrial-scale entrained flow gasifier," Energy, Elsevier, vol. 195(C).
    18. Naraharisetti, Pavan Kumar & Lakshminarayanan, S. & Karimi, I.A., 2014. "Design of biomass and natural gas based IGFC using multi-objective optimization," Energy, Elsevier, vol. 73(C), pages 635-652.
    19. Kun, Zhang & He, Demin & Guan, Jun & Zhang, Qiumin, 2019. "Thermodynamic analysis of chemical looping gasification coupled with lignite pyrolysis," Energy, Elsevier, vol. 166(C), pages 807-818.
    20. Yang, Qingchun & Zhang, Dawei & Zhou, Huairong & Zhang, Chenwei, 2018. "Process simulation, analysis and optimization of a coal to ethylene glycol process," Energy, Elsevier, vol. 155(C), pages 521-534.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.