IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v281y2023ics0360544223016547.html
   My bibliography  Save this article

Numerical analysis of the flow and heat transfer characteristics of oil-gas-water three-phase fluid in corrugated plate heat exchanger

Author

Listed:
  • Duan, Xin-Yue
  • Xu, Man-Rui
  • Zhang, Tian-Peng
  • Li, Feng-Ming
  • Zhu, Chuan-Yong
  • Gong, Liang

Abstract

The heat exchanger is the key device for waste heat recovery from oilfield wastewater, which is an oil, water, gas mixture. Therefore, this paper aims to numerically investigate the flow and heat transfer performance of the corrugated plate heat exchanger by using the oil-gas-water three-phase mixture as the working flowing. The multi-fluid Eulerian framework along with the population balance model is adopted and validated first. Then the effects of different factors on the flow and heat transfer performance of a corrugated channel are studied. The results indicate that the gas accumulation on the wall will deteriorate the local heat transfer performance of the corrugated channel. Increasing the inlet gas content could enhance the gas holdup near walls and decrease the local heat transfer performance, as well as the comprehensive heat transfer performance (PEF) of the corrugated channel. The corrugation height remarkably influences the average Nu and pressure drop of the corrugated channel. When the Re is small (Re < 3000), the corrugated plate channel with a large corrugation height exhibits the best heat transfer performance; however, when Re is large, the heat transfer decreases with the rise in the corrugation height. Besides, the results demonstrate that the inlet gas bubble size has almost no influence on the heat and flow performance of the present corrugated plate sewage heat exchanger.

Suggested Citation

  • Duan, Xin-Yue & Xu, Man-Rui & Zhang, Tian-Peng & Li, Feng-Ming & Zhu, Chuan-Yong & Gong, Liang, 2023. "Numerical analysis of the flow and heat transfer characteristics of oil-gas-water three-phase fluid in corrugated plate heat exchanger," Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016547
    DOI: 10.1016/j.energy.2023.128260
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223016547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abu-Khader, Mazen M., 2012. "Plate heat exchangers: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1883-1891.
    2. Shen, Chao & Jiang, Yiqiang & Yao, Yang & Wang, Xinlei, 2012. "An experimental comparison of two heat exchangers used in wastewater source heat pump: A novel dry-expansion shell-and-tube evaporator versus a conventional immersed evaporator," Energy, Elsevier, vol. 47(1), pages 600-608.
    3. Kandilli, Canan & Koclu, Aytac, 2011. "Assessment of the optimum operation conditions of a plate heat exchanger for waste heat recovery in textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4424-4431.
    4. Pei Wang & Shuai Shen & Ling Zhou & Deyou Liu, 2019. "Turbulent Aggregation and Deposition Mechanism of Respirable Dust Pollutants under Wet Dedusting using a Two-Fluid Model with the Population Balance Method," IJERPH, MDPI, vol. 16(18), pages 1-20, September.
    5. Xu, Z.Y. & Gao, J.T. & Hu, Bin & Wang, R.Z., 2022. "Multi-criterion comparison of compression and absorption heat pumps for ultra-low grade waste heat recovery," Energy, Elsevier, vol. 238(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
    2. Olga Arsenyeva & Leonid Tovazhnyanskyy & Petro Kapustenko & Jiří Jaromír Klemeš & Petar Sabev Varbanov, 2023. "Review of Developments in Plate Heat Exchanger Heat Transfer Enhancement for Single-Phase Applications in Process Industries," Energies, MDPI, vol. 16(13), pages 1-28, June.
    3. Wei-Hsin Chen & Yi-Wei Li & Min-Hsing Chang & Chih-Che Chueh & Veeramuthu Ashokkumar & Lip Huat Saw, 2022. "Operation and Multi-Objective Design Optimization of a Plate Heat Exchanger with Zigzag Flow Channel Geometry," Energies, MDPI, vol. 15(21), pages 1-22, November.
    4. Zhang, Hongsheng & Liu, Xingang & Hao, Ruijun & Liu, Chengjun & Liu, Yifeng & Duan, Chenghong & Qin, Jiyun, 2022. "Thermodynamic performance study on gas-steam cogeneration systems with different configurations based on condensed waste heat utilization," Energy, Elsevier, vol. 250(C).
    5. Zhang, Jing & Zhang, Hong-Hu & He, Ya-Ling & Tao, Wen-Quan, 2016. "A comprehensive review on advances and applications of industrial heat pumps based on the practices in China," Applied Energy, Elsevier, vol. 178(C), pages 800-825.
    6. Li, Yemao & Xia, Jianjun & Fang, Hao & Su, Yingbo & Jiang, Yi, 2016. "Case study on industrial surplus heat of steel plants for district heating in Northern China," Energy, Elsevier, vol. 102(C), pages 397-405.
    7. Mergner, Hanna & Schaber, Karlheinz, 2018. "Performance analysis of an evaporation process of plate heat exchangers installed in a Kalina power plant," Energy, Elsevier, vol. 145(C), pages 105-115.
    8. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
    9. Seung-Hoon Park & Yong-Sung Jang & Eui-Jong Kim, 2021. "Design and Performance Evaluation of a Heat Pump System Utilizing a Permanent Dewatering System," Energies, MDPI, vol. 14(8), pages 1-16, April.
    10. Wang, Bohong & Arsenyeva, Olga & Zeng, Min & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2022. "An advanced Grid Diagram for heat exchanger network retrofit with detailed plate heat exchanger design," Energy, Elsevier, vol. 248(C).
    11. Chae, Kyu-Jung & Ren, Xianghao, 2016. "Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system," Applied Energy, Elsevier, vol. 179(C), pages 565-574.
    12. Zhang, Ji & Zhu, Xiaowei & Mondejar, Maria E. & Haglind, Fredrik, 2019. "A review of heat transfer enhancement techniques in plate heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 305-328.
    13. Zhang, Xi & Hu, Bin & Wang, Ruzhu & Xu, Zhenyuan, 2024. "Performance enhancement of hybrid absorption-compression heat pump via internal heat recovery," Energy, Elsevier, vol. 286(C).
    14. Qi Xu & Saffa Riffat & Shihao Zhang, 2019. "Review of Heat Recovery Technologies for Building Applications," Energies, MDPI, vol. 12(7), pages 1-22, April.
    15. Yurim Kim & Jonghun Lim & Jae Yun Shim & Seokil Hong & Heedong Lee & Hyungtae Cho, 2022. "Optimization of Heat Exchanger Network via Pinch Analysis in Heat Pump-Assisted Textile Industry Wastewater Heat Recovery System," Energies, MDPI, vol. 15(9), pages 1-16, April.
    16. El Fil, Bachir & Garimella, Srinivas, 2021. "Waste heat recovery in commercial gas-fired tumble dryers," Energy, Elsevier, vol. 218(C).
    17. Ma, Hongting & Du, Na & Zhang, Zeyu & Lyu, Fan & Deng, Na & Li, Cong & Yu, Shaojie, 2017. "Assessment of the optimum operation conditions on a heat pipe heat exchanger for waste heat recovery in steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 50-60.
    18. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    19. Ma, Hongting & Yin, Lihui & Shen, Xiaopeng & Lu, Wenqian & Sun, Yuexia & Zhang, Yufeng & Deng, Na, 2016. "Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery," Applied Energy, Elsevier, vol. 169(C), pages 177-186.
    20. Mardiana, A. & Riffat, S.B., 2013. "Review on physical and performance parameters of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 174-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.