IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i9p4424-4431.html
   My bibliography  Save this article

Assessment of the optimum operation conditions of a plate heat exchanger for waste heat recovery in textile industry

Author

Listed:
  • Kandilli, Canan
  • Koclu, Aytac

Abstract

Textile industry plays an important role economically in Turkey. A great amount of hot waste liquids and gases are let out in many textile processes. These waste liquids and gases have crucial energy saving potential, especially for dyeing process. It could be possible to provide energy saving by employing a waste heat recovery system (WHRS). The optimum operation conditions were assessed by integrating the first and the second law of thermodynamics for a counter flow PHE employed for a dyeing process in textile industry. The WHRS has been established by a well-known blanket manufactory located in Usak Organized Industrial Zone (UOIZ), Turkey has been evaluated. While the waste water mass flow rate varies between 8 and 12m3/h, exergy destruction rate, exergy efficiency and effectiveness of the PHE have the values from 5.55 to 13.68kW; from 53.6% to 67.2% and from 0.996 to 0.810, respectively. Optimum waste water and cold water mass flow rate was found as 10.00 and 7.00m3/h, respectively. While the cold water mass flow rate varies between 5 and 9m3/h, exergy destruction rate, exergy efficiency and effectiveness of the PHE have the values from 8.05 to 10.89kW; from %56.3% to %63.9% and from 0.868 to 0.991, respectively. While the waste water inlet temperatures vary between 52.4 and 59.5°C, exergy destruction rate, exergy efficiency and effectiveness of the PHE have the values from 5.40 to 9.46kW; from 68.7% to 61.6% and from 0.969 to 0.924, respectively at optimum mass flow rates. The present study has a great potential to serve applications of WHRS for textile application especially dyeing process. It is expected that the approach presented here would be beneficial to everyone involved in the design and performance evaluation of WHRS with PHE in many industrial sectors. It is clear that employing PHEs operating optimum conditions contribute energy savings, decrease energy cost, improve environmental impacts and shorten process period and supply economical benefits for textile industry as well as the other industrial sectors.

Suggested Citation

  • Kandilli, Canan & Koclu, Aytac, 2011. "Assessment of the optimum operation conditions of a plate heat exchanger for waste heat recovery in textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4424-4431.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:9:p:4424-4431
    DOI: 10.1016/j.rser.2011.07.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032111003558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2011.07.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tugrul Ogulata, R., 2004. "Utilization of waste-heat recovery in textile drying," Applied Energy, Elsevier, vol. 79(1), pages 41-49, September.
    2. Pulat, E. & Etemoglu, A.B. & Can, M., 2009. "Waste-heat recovery potential in Turkish textile industry: Case study for city of Bursa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 663-672, April.
    3. Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yemao & Xia, Jianjun & Fang, Hao & Su, Yingbo & Jiang, Yi, 2016. "Case study on industrial surplus heat of steel plants for district heating in Northern China," Energy, Elsevier, vol. 102(C), pages 397-405.
    2. Barma, M.C. & Saidur, R. & Rahman, S.M.A. & Allouhi, A. & Akash, B.A. & Sait, Sadiq M., 2017. "A review on boilers energy use, energy savings, and emissions reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 970-983.
    3. Ma, Hongting & Yin, Lihui & Shen, Xiaopeng & Lu, Wenqian & Sun, Yuexia & Zhang, Yufeng & Deng, Na, 2016. "Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery," Applied Energy, Elsevier, vol. 169(C), pages 177-186.
    4. El Fil, Bachir & Garimella, Srinivas, 2021. "Waste heat recovery in commercial gas-fired tumble dryers," Energy, Elsevier, vol. 218(C).
    5. Duan, Xin-Yue & Xu, Man-Rui & Zhang, Tian-Peng & Li, Feng-Ming & Zhu, Chuan-Yong & Gong, Liang, 2023. "Numerical analysis of the flow and heat transfer characteristics of oil-gas-water three-phase fluid in corrugated plate heat exchanger," Energy, Elsevier, vol. 281(C).
    6. Wang, Bohong & Arsenyeva, Olga & Zeng, Min & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2022. "An advanced Grid Diagram for heat exchanger network retrofit with detailed plate heat exchanger design," Energy, Elsevier, vol. 248(C).
    7. Yurim Kim & Jonghun Lim & Jae Yun Shim & Seokil Hong & Heedong Lee & Hyungtae Cho, 2022. "Optimization of Heat Exchanger Network via Pinch Analysis in Heat Pump-Assisted Textile Industry Wastewater Heat Recovery System," Energies, MDPI, vol. 15(9), pages 1-16, April.
    8. Ma, Hongting & Du, Na & Zhang, Zeyu & Lyu, Fan & Deng, Na & Li, Cong & Yu, Shaojie, 2017. "Assessment of the optimum operation conditions on a heat pipe heat exchanger for waste heat recovery in steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 50-60.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Hongting & Du, Na & Zhang, Zeyu & Lyu, Fan & Deng, Na & Li, Cong & Yu, Shaojie, 2017. "Assessment of the optimum operation conditions on a heat pipe heat exchanger for waste heat recovery in steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 50-60.
    2. Ma, Hongting & Yin, Lihui & Shen, Xiaopeng & Lu, Wenqian & Sun, Yuexia & Zhang, Yufeng & Deng, Na, 2016. "Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery," Applied Energy, Elsevier, vol. 169(C), pages 177-186.
    3. Tian, En & He, Ya-Ling & Tao, Wen-Quan, 2017. "Research on a new type waste heat recovery gravity heat pipe exchanger," Applied Energy, Elsevier, vol. 188(C), pages 586-594.
    4. Mehak Shafiq & Muhammad Farooq & Waqas Javed & George Loumakis & Don McGlinchey, 2023. "Thermo-Hydraulic Performance Analysis of Fe 3 O 4 -Water Nanofluid-Based Flat-Plate Solar Collectors," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    5. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    6. Juaidi, Adel & Montoya, Francisco G. & Ibrik, Imad H. & Manzano-Agugliaro, Francisco, 2016. "An overview of renewable energy potential in Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 943-960.
    7. Shen, Chong & Zhang, Maoyong & Li, Xianting, 2017. "Experimental investigation on the thermal performance of cooling pipes embedded in a graphitization furnace," Energy, Elsevier, vol. 121(C), pages 55-65.
    8. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    9. Kerme, Esa Dube & Orfi, Jamel & Fung, Alan S. & Salilih, Elias M. & Khan, Salah Ud-Din & Alshehri, Hassan & Ali, Emad & Alrasheed, Mohammed, 2020. "Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system," Energy, Elsevier, vol. 196(C).
    10. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    11. Carolino, Cristina Guedes & Medeiros Ferreira, João Paulo, 2013. "First and second law analyses to an energetic valorization process of biogas," Renewable Energy, Elsevier, vol. 59(C), pages 58-64.
    12. Hervas-Blasco, Estefanía & Pitarch, Miquel & Navarro-Peris, Emilio & Corberán, José M., 2017. "Optimal sizing of a heat pump booster for sanitary hot water production to maximize benefit for the substitution of gas boilers," Energy, Elsevier, vol. 127(C), pages 558-570.
    13. Toghyani, Mahboubeh & Rahimi, Amir, 2015. "Exergy analysis of an industrial unit of catalyst regeneration based on the results of modeling and simulation," Energy, Elsevier, vol. 91(C), pages 1049-1056.
    14. Yurim Kim & Jonghun Lim & Jae Yun Shim & Seokil Hong & Heedong Lee & Hyungtae Cho, 2022. "Optimization of Heat Exchanger Network via Pinch Analysis in Heat Pump-Assisted Textile Industry Wastewater Heat Recovery System," Energies, MDPI, vol. 15(9), pages 1-16, April.
    15. Xia, Xiaoxia & Liu, Zhipeng & Wang, Zhiqi & Sun, Tong & Zhang, Hualong & Zhang, Sifeng, 2023. "Thermo-economic-environmental optimization design of dual-loop organic Rankine cycle under fluctuating heat source temperature," Energy, Elsevier, vol. 264(C).
    16. Meroueh, Laureen & Yenduru, Karthik & Dasgupta, Arindam & Jiang, Duo & AuYeung, Nick, 2019. "Energy storage based on SrCO3 and Sorbents—A probabilistic analysis towards realizing solar thermochemical power plants," Renewable Energy, Elsevier, vol. 133(C), pages 770-786.
    17. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    18. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    19. Shangyuan Chen & Jinfeng Mao & Xu Han & Chaofeng Li & Liyao Liu, 2016. "Numerical Analysis of the Factors Influencing a Vertical U-Tube Ground Heat Exchanger," Sustainability, MDPI, vol. 8(9), pages 1-12, September.
    20. Xydis, G. & Koroneos, C. & Loizidou, M., 2009. "Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: A case study in Southern Greece," Applied Energy, Elsevier, vol. 86(11), pages 2411-2420, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:9:p:4424-4431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.