IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v179y2016icp565-574.html
   My bibliography  Save this article

Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system

Author

Listed:
  • Chae, Kyu-Jung
  • Ren, Xianghao

Abstract

Among many options to improve energy self-sufficiency in sewage treatment plants, heat extraction using a heat pump holds great promise, since wastewater contains considerable amounts of thermal energy. The actual heat energy demand at municipal wastewater treatment plants (WWTPs) varies widely with time; however, the heat pumps typically installed in WWTPs are of the on/off controlled fixed-speed type, thus mostly run intermittently at severe part-load conditions with poor efficiency. To solve this mismatch, a specially designed, fixed-inverter hybrid heat pump system incorporating a fixed-speed compressor and an inverter-driven, variable-speed compressor was developed and tested in a real WWTP. In this hybrid configuration, to improve load response and energy efficiency, the base-heat load was covered by the fixed-speed compressor consuming relatively less energy than the variable-speed type at nominal power, and the remaining varying load was handled by the inverter compressor which exhibits a high load-match function while consuming relatively greater energy. The heat pump system developed reliably extracted heat from the treated effluent as a heat source for heating and cooling purposes throughout the year, and actively responded to the load changes with a high measured coefficient of performance (COP) of 4.06 for heating and 3.64 for cooling. Moreover, this hybrid operation yielded a performance up to 15.04% better on part loads than the single inverter operation, suggesting its effectiveness for improving annual energy saving when applied to highly load-fluctuating real WWTPs. To improve the overall efficiency of the heat recovery system, although the heat pump is the largest energy-consuming component, taking up 56.0–68.5% of the total energy, new efforts to develop a novel design are also needed to make the heat exchanger more energy-efficient.

Suggested Citation

  • Chae, Kyu-Jung & Ren, Xianghao, 2016. "Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system," Applied Energy, Elsevier, vol. 179(C), pages 565-574.
  • Handle: RePEc:eee:appene:v:179:y:2016:i:c:p:565-574
    DOI: 10.1016/j.apenergy.2016.07.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191630962X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.07.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pulat, E. & Etemoglu, A.B. & Can, M., 2009. "Waste-heat recovery potential in Turkish textile industry: Case study for city of Bursa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 663-672, April.
    2. Qi, Zishu & Gao, Qing & Liu, Yan & Yan, Y.Y. & Spitler, Jeffrey D., 2014. "Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 37-51.
    3. Shen, Chao & Jiang, Yiqiang & Yao, Yang & Wang, Xinlei, 2012. "An experimental comparison of two heat exchangers used in wastewater source heat pump: A novel dry-expansion shell-and-tube evaporator versus a conventional immersed evaporator," Energy, Elsevier, vol. 47(1), pages 600-608.
    4. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    5. Park, Ki-Jung & Jung, Dongsoo, 2009. "Performance of heat pumps charged with R170/R290 mixture," Applied Energy, Elsevier, vol. 86(12), pages 2598-2603, December.
    6. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    7. Chao, Shen & Yiqiang, Jiang & Yang, Yao & Shiming, Deng, 2012. "Experimental performance evaluation of a novel dry-expansion evaporator with defouling function in a wastewater source heat pump," Applied Energy, Elsevier, vol. 95(C), pages 202-209.
    8. Elías-Maxil, J.A. & van der Hoek, Jan Peter & Hofman, Jan & Rietveld, Luuk, 2014. "Energy in the urban water cycle: Actions to reduce the total expenditure of fossil fuels with emphasis on heat reclamation from urban water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 808-820.
    9. Liu, Lanbin & Fu, Lin & Jiang, Yi, 2010. "Application of an exhaust heat recovery system for domestic hot water," Energy, Elsevier, vol. 35(3), pages 1476-1481.
    10. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    11. Zhang, Xingxing & Shen, Jingchun & Xu, Peng & Zhao, Xudong & Xu, Ying, 2014. "Socio-economic performance of a novel solar photovoltaic/loop-heat-pipe heat pump water heating system in three different climatic regions," Applied Energy, Elsevier, vol. 135(C), pages 20-34.
    12. Hawlader, M. N. A. & Chou, S. K. & Jahangeer, K. A. & Rahman, S. M. A. & Lau K. W., Eugene, 2003. "Solar-assisted heat-pump dryer and water heater," Applied Energy, Elsevier, vol. 74(1-2), pages 185-193, January.
    13. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    14. Hepbasli, Arif & Kalinci, Yildiz, 2009. "A review of heat pump water heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1211-1229, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nigel Twi-Yeboah & Dacosta Osei & William H. Dontoh & George Adu Asamoah & Janet Baffoe & Michael K. Danquah, 2024. "Enhancing Energy Efficiency and Resource Recovery in Wastewater Treatment Plants," Energies, MDPI, vol. 17(13), pages 1-23, June.
    2. Ziyang Guo & Yongjun Sun & Shu-Yuan Pan & Pen-Chi Chiang, 2019. "Integration of Green Energy and Advanced Energy-Efficient Technologies for Municipal Wastewater Treatment Plants," IJERPH, MDPI, vol. 16(7), pages 1-29, April.
    3. Liu, Runxi & Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin, 2021. "Optimizing the recovery pathway of a net-zero energy wastewater treatment model by balancing energy recovery and eco-efficiency," Applied Energy, Elsevier, vol. 298(C).
    4. Guo, Xiaochao & Ma, Zhixian & Ma, Liangdong & Zhang, Jili, 2019. "Experimental study on the performance of a novel in–house heat pump water heater with freezing latent heat evaporator and assisted by domestic drain water," Applied Energy, Elsevier, vol. 235(C), pages 442-450.
    5. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
    6. Mariusz Szreder & Marek Miara, 2020. "Impact of Compressor Drive System Efficiency on Air Source Heat Pump Performance for Heating Hot Water," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    7. Tomasz Łokietek & Wojciech Tuchowski & Dorota Leciej-Pirczewska & Anna Głowacka, 2022. "Heat Recovery from a Wastewater Treatment Process—Case Study," Energies, MDPI, vol. 16(1), pages 1-15, December.
    8. Zhao, Chuandang & Xu, Jiuping & Wang, Fengjuan & Xie, Guo & Tan, Cheng, 2024. "Economic–environmental trade-offs based support policy towards optimal planning of wastewater heat recovery," Applied Energy, Elsevier, vol. 364(C).
    9. Golzar, Farzin & Silveira, Semida, 2021. "Impact of wastewater heat recovery in buildings on the performance of centralized energy recovery – A case study of Stockholm," Applied Energy, Elsevier, vol. 297(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pomianowski, M.Z. & Johra, H. & Marszal-Pomianowska, A. & Zhang, C., 2020. "Sustainable and energy-efficient domestic hot water systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    3. Zhang, Jing & Zhang, Hong-Hu & He, Ya-Ling & Tao, Wen-Quan, 2016. "A comprehensive review on advances and applications of industrial heat pumps based on the practices in China," Applied Energy, Elsevier, vol. 178(C), pages 800-825.
    4. Hou, Gaoyang & Taherian, Hessam & Song, Ying & Jiang, Wei & Chen, Diyi, 2022. "A systematic review on optimal analysis of horizontal heat exchangers in ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Dong, Jiankai & Zhang, Zhuo & Yao, Yang & Jiang, Yiqiang & Lei, Bo, 2015. "Experimental performance evaluation of a novel heat pump water heater assisted with shower drain water," Applied Energy, Elsevier, vol. 154(C), pages 842-850.
    6. Zimny, Jacek & Michalak, Piotr & Szczotka, Krzysztof, 2015. "Polish heat pump market between 2000 and 2013: European background, current state and development prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 791-812.
    7. Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.
    8. Wu, Wei & Li, Xianting & You, Tian & Wang, Baolong & Shi, Wenxing, 2015. "Combining ground source absorption heat pump with ground source electrical heat pump for thermal balance, higher efficiency and better economy in cold regions," Renewable Energy, Elsevier, vol. 84(C), pages 74-88.
    9. Abdur Rehman Mazhar & Shuli Liu & Ashish Shukla, 2018. "A Key Review of Non-Industrial Greywater Heat Harnessing," Energies, MDPI, vol. 11(2), pages 1-34, February.
    10. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    11. Ma, Hongting & Li, Cong & Lu, Wenqian & Zhang, Zeyu & Yu, Shaojie & Du, Na, 2017. "Investigation on a solar-groundwater heat pump unit associated with radiant floor heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 972-977.
    12. Natanael Bolson & Maxim Yutkin & Tadeusz Patzek, 2023. "Primary Power Analysis of a Global Electrification Scenario," Sustainability, MDPI, vol. 15(19), pages 1-20, October.
    13. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    14. Le, Khoa Xuan & Huang, Ming Jun & Shah, Nikhilkumar N. & Wilson, Christopher & Artain, Paul Mac & Byrne, Raymond & Hewitt, Neil J., 2019. "Techno-economic assessment of cascade air-to-water heat pump retrofitted into residential buildings using experimentally validated simulations," Applied Energy, Elsevier, vol. 250(C), pages 633-652.
    15. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Optimal control of heat pump water heater-instantaneous shower using integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 201(C), pages 332-342.
    16. Poppi, Stefano & Sommerfeldt, Nelson & Bales, Chris & Madani, Hatef & Lundqvist, Per, 2018. "Techno-economic review of solar heat pump systems for residential heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 22-32.
    17. Nizetic, S. & Coko, D. & Marasovic, I., 2014. "Experimental study on a hybrid energy system with small- and medium-scale applications for mild climates," Energy, Elsevier, vol. 75(C), pages 379-389.
    18. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    19. Bao, Ting & Liu, Zhen (Leo), 2019. "Thermohaline stratification modeling in mine water via double-diffusive convection for geothermal energy recovery from flooded mines," Applied Energy, Elsevier, vol. 237(C), pages 566-580.
    20. Madlener, Reinhard & Lohaus, Mathias, 2015. "Well Drainage Management in Abandoned Mines: Optimizing Energy Costs and Heat Use Under Uncertainty," FCN Working Papers 12/2015, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Jul 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:179:y:2016:i:c:p:565-574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.