IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i4p1883-1891.html
   My bibliography  Save this article

Plate heat exchangers: Recent advances

Author

Listed:
  • Abu-Khader, Mazen M.

Abstract

This study presents the advances in plate heat exchangers both in theory and application. It dresses the direction of various technical research and developments in the field of energy handling and conservation. The selected areas of heat transfer performance and pressure drop characteristics, general models and calculations change of phase; boiling and condensation, fouling and corrosion, and welded type plate heat exchangers and finally other related areas are highlighted.

Suggested Citation

  • Abu-Khader, Mazen M., 2012. "Plate heat exchangers: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1883-1891.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:4:p:1883-1891
    DOI: 10.1016/j.rser.2012.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211200010X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.01.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arsenyeva, Olga P. & Tovazhnyansky, Leonid L. & Kapustenko, Petro O. & Khavin, Gennadiy L., 2011. "Optimal design of plate-and-frame heat exchangers for efficient heat recovery in process industries," Energy, Elsevier, vol. 36(8), pages 4588-4598.
    2. Sanaye, Sepehr & Hajabdollahi, Hassan, 2010. "Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm," Applied Energy, Elsevier, vol. 87(6), pages 1893-1902, June.
    3. Sheik Ismail, L. & Velraj, R. & Ranganayakulu, C., 2010. "Studies on pumping power in terms of pressure drop and heat transfer characteristics of compact plate-fin heat exchangers--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 478-485, January.
    4. Pandey, Shive Dayal & Nema, V.K., 2011. "An experimental investigation of exergy loss reduction in corrugated plate heat exchanger," Energy, Elsevier, vol. 36(5), pages 2997-3001.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "A review on the air-to-air heat and mass exchanger technologies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 753-774.
    2. Wei-Hsin Chen & Yi-Wei Li & Min-Hsing Chang & Chih-Che Chueh & Veeramuthu Ashokkumar & Lip Huat Saw, 2022. "Operation and Multi-Objective Design Optimization of a Plate Heat Exchanger with Zigzag Flow Channel Geometry," Energies, MDPI, vol. 15(21), pages 1-22, November.
    3. Dizaji, Hamed Sadighi & Pourhedayat, Samira & Moria, Hazim & Alqahtani, Sultan & Alshehery, Sultan & Anqi, Ali E., 2024. "Performance boost of a commercial air-to-air plate heat recovery unit by mesh-net insert; thermal-frictional, economic, and effectiveness-NTU analysis," Energy, Elsevier, vol. 290(C).
    4. Zhang, Ji & Zhu, Xiaowei & Mondejar, Maria E. & Haglind, Fredrik, 2019. "A review of heat transfer enhancement techniques in plate heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 305-328.
    5. Mardiana, A. & Riffat, S.B., 2013. "Review on physical and performance parameters of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 174-190.
    6. Qi Xu & Saffa Riffat & Shihao Zhang, 2019. "Review of Heat Recovery Technologies for Building Applications," Energies, MDPI, vol. 12(7), pages 1-22, April.
    7. Mergner, Hanna & Schaber, Karlheinz, 2018. "Performance analysis of an evaporation process of plate heat exchangers installed in a Kalina power plant," Energy, Elsevier, vol. 145(C), pages 105-115.
    8. Duan, Xin-Yue & Xu, Man-Rui & Zhang, Tian-Peng & Li, Feng-Ming & Zhu, Chuan-Yong & Gong, Liang, 2023. "Numerical analysis of the flow and heat transfer characteristics of oil-gas-water three-phase fluid in corrugated plate heat exchanger," Energy, Elsevier, vol. 281(C).
    9. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
    10. Olga Arsenyeva & Leonid Tovazhnyanskyy & Petro Kapustenko & Jiří Jaromír Klemeš & Petar Sabev Varbanov, 2023. "Review of Developments in Plate Heat Exchanger Heat Transfer Enhancement for Single-Phase Applications in Process Industries," Energies, MDPI, vol. 16(13), pages 1-28, June.
    11. Ebrahimzadeh, Edris & Wilding, Paul & Frankman, David & Fazlollahi, Farhad & Baxter, Larry L., 2016. "Theoretical and experimental analysis of dynamic heat exchanger: Retrofit configuration," Energy, Elsevier, vol. 96(C), pages 545-560.
    12. Saranmanduh Borjigin & Ting Ma & Min Zeng & Qiuwang Wang, 2018. "A Numerical Study of Small-Scale Longitudinal Heat Conduction in Plate Heat Exchangers," Energies, MDPI, vol. 11(7), pages 1-15, July.
    13. Philipp Knödler & Volker Dreissigacker, 2024. "Fluid Dynamic Assessment and Development of Nusselt Correlations for Fischer Koch S Structures," Energies, MDPI, vol. 17(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arsenyeva, O. & Kapustenko, P. & Tovazhnyanskyy, L. & Khavin, G., 2013. "The influence of plate corrugations geometry on plate heat exchanger performance in specified process conditions," Energy, Elsevier, vol. 57(C), pages 201-207.
    2. Ebrahimzadeh, Edris & Wilding, Paul & Frankman, David & Fazlollahi, Farhad & Baxter, Larry L., 2016. "Theoretical and experimental analysis of dynamic heat exchanger: Retrofit configuration," Energy, Elsevier, vol. 96(C), pages 545-560.
    3. De Bellis, Fabio & Catalano, Luciano A., 2012. "CFD optimization of an immersed particle heat exchanger," Applied Energy, Elsevier, vol. 97(C), pages 841-848.
    4. Wang, Zhe & Li, Yanzhong, 2016. "A combined method for surface selection and layer pattern optimization of a multistream plate-fin heat exchanger," Applied Energy, Elsevier, vol. 165(C), pages 815-827.
    5. Li, You-Rong & Du, Mei-Tang & Wu, Shuang-Ying & Peng, Lan & Liu, Chao, 2012. "Exergoeconomic analysis and optimization of a condenser for a binary mixture of vapors in organic Rankine cycle," Energy, Elsevier, vol. 40(1), pages 341-347.
    6. Jaroslaw Krzywanski, 2019. "A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods," Energies, MDPI, vol. 12(23), pages 1-32, November.
    7. Sadighi Dizaji, Hamed & Jafarmadar, Samad & Hashemian, Mehran, 2015. "The effect of flow, thermodynamic and geometrical characteristics on exergy loss in shell and coiled tube heat exchangers," Energy, Elsevier, vol. 91(C), pages 678-684.
    8. Chantrelle, Fanny Pernodet & Lahmidi, Hicham & Keilholz, Werner & Mankibi, Mohamed El & Michel, Pierre, 2011. "Development of a multicriteria tool for optimizing the renovation of buildings," Applied Energy, Elsevier, vol. 88(4), pages 1386-1394, April.
    9. Shen, Suping & Cai, Wenjian & Wang, Xinli & Wu, Qiong & Yon, Haoren, 2017. "Investigation of liquid desiccant regenerator with fixed-plate heat recovery system," Energy, Elsevier, vol. 137(C), pages 172-182.
    10. Pei Lu & Zheng Liang & Xianglong Luo & Yangkai Xia & Jin Wang & Kaihuang Chen & Yingzong Liang & Jianyong Chen & Zhi Yang & Jiacheng He & Ying Chen, 2023. "Design and Optimization of Organic Rankine Cycle Based on Heat Transfer Enhancement and Novel Heat Exchanger: A Review," Energies, MDPI, vol. 16(3), pages 1-34, January.
    11. Reine, Alexandre & Bou Nader, Wissam, 2019. "Fuel consumption potential of different external combustion gas-turbine thermodynamic configurations for extended range electric vehicles," Energy, Elsevier, vol. 175(C), pages 900-913.
    12. Şöhret, Yasin & Dinç, Ali & Karakoç, T. Hikmet, 2015. "Exergy analysis of a turbofan engine for an unmanned aerial vehicle during a surveillance mission," Energy, Elsevier, vol. 93(P1), pages 716-729.
    13. Wei-Hsin Chen & Yi-Wei Li & Min-Hsing Chang & Chih-Che Chueh & Veeramuthu Ashokkumar & Lip Huat Saw, 2022. "Operation and Multi-Objective Design Optimization of a Plate Heat Exchanger with Zigzag Flow Channel Geometry," Energies, MDPI, vol. 15(21), pages 1-22, November.
    14. Fabio Battaglia & Martinus Arie & Xiang Zhang & Michael Ohadi & Amir Shooshtari, 2023. "Experimental Characterization of an Additively Manufactured Inconel 718 Heat Exchanger for High-Temperature Applications," Energies, MDPI, vol. 16(10), pages 1-20, May.
    15. Li, Ming & Cao, Sunliang & Zhu, Xiaolin & Xu, Yang, 2022. "Techno-economic analysis of the transition towards the large-scale hybrid wind-tidal supported coastal zero-energy communities," Applied Energy, Elsevier, vol. 316(C).
    16. Gaoliang Liao & Zhizhou Li & Feng Zhang & Lijun Liu & Jiaqiang E, 2021. "A Review on the Thermal-Hydraulic Performance and Optimization of Compact Heat Exchangers," Energies, MDPI, vol. 14(19), pages 1-35, September.
    17. Sanaye, Sepehr & Dehghandokht, Masoud, 2011. "Modeling and multi-objective optimization of parallel flow condenser using evolutionary algorithm," Applied Energy, Elsevier, vol. 88(5), pages 1568-1577, May.
    18. Wang, Kun & He, Ya-Ling & Xue, Xiao-Dai & Du, Bao-Cun, 2017. "Multi-objective optimization of the aiming strategy for the solar power tower with a cavity receiver by using the non-dominated sorting genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 399-416.
    19. Wang, Limin & Deng, Lei & Ji, Chenglong & Liang, Erkai & Wang, Changxia & Che, Defu, 2016. "Multi-objective optimization of geometrical parameters of corrugated-undulated heat transfer surfaces," Applied Energy, Elsevier, vol. 174(C), pages 25-36.
    20. Srikanth, R. & Nemani, Pavan & Balaji, C., 2015. "Multi-objective geometric optimization of a PCM based matrix type composite heat sink," Applied Energy, Elsevier, vol. 156(C), pages 703-714.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:4:p:1883-1891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.