IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v279y2023ics0360544223014391.html
   My bibliography  Save this article

Microscopic molecular and experimental insights into multi-stage inhibition mechanisms of alkylated hydrate inhibitor

Author

Listed:
  • Liao, Bo
  • Wang, Jintang
  • Li, Mei-Chun
  • Lv, Kaihe
  • Wang, Qi
  • Li, Jian
  • Huang, Xianbing
  • Wang, Ren
  • Lv, Xindi
  • Chen, Zhangxin
  • Sun, Jinsheng

Abstract

A deep understanding of the mechanism of hydrate inhibitors on hydrate formation is crucial for the development of efficient natural gas hydrate inhibitors. However, the current understanding of the inhibitory mechanism of hydrate inhibitors in the nucleation and formation processes is still very limited, which greatly hinders the development of new types of hydrate inhibitors. In this study, the solution polymerization method was employed to prepare poly (N-vinyl pyrrolidone-co-N,N-dimethyl acrylamide), as a new kinetic hydrate inhibitor. The inhibition properties were investigated by the constant cooling test and the step cooling test. Meanwhile, the multi-stage inhibition mechanisms of alkylated hydrate inhibitor were also revealed based on molecular simulations. The results of experiments and molecular simulations illustrate that the mechanism of the inhibitors varies at different stages. The inhibitors retard hydrate formation by reducing the solubility of methane molecules in water during the nucleation phase. However, during the formation phase, the hydrate inhibition is achieved by adsorption. In particular, the absorption of poly (vinyl pyrrolidone) on the surface of hydrate can be effectively improved by alkylation, and the interaction energy of poly (N-vinyl pyrrolidone-co-N,N-dimethyl acrylamide) with the hydrate nucleus was increased by 3.22 times compared to poly (vinyl pyrrolidone). It resulted in an increase in subcooling of 8.2 °C. Also, the effective induction time of poly (N-vinyl pyrrolidone-co-N,N-dimethyl acrylamide) at 8 °C was extended to 987 min. A molecular model for evaluating the interaction of inhibitors with hydrates is also successfully developed, which corresponds well to the experimental results. These results contribute to a better understanding of hydrate formation in drilling fluids and implications for developing new materials for high-performance hydrate drilling fluids.

Suggested Citation

  • Liao, Bo & Wang, Jintang & Li, Mei-Chun & Lv, Kaihe & Wang, Qi & Li, Jian & Huang, Xianbing & Wang, Ren & Lv, Xindi & Chen, Zhangxin & Sun, Jinsheng, 2023. "Microscopic molecular and experimental insights into multi-stage inhibition mechanisms of alkylated hydrate inhibitor," Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223014391
    DOI: 10.1016/j.energy.2023.128045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223014391
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yanlong & Wu, Nengyou & Ning, Fulong & Gao, Deli & Hao, Xiluo & Chen, Qiang & Liu, Changling & Sun, Jianye, 2020. "Hydrate-induced clogging of sand-control screen and its implication on hydrate production operation," Energy, Elsevier, vol. 206(C).
    2. Huang, Li & Yin, Zhenyuan & Wan, Yizhao & Sun, Jianye & Wu, Nengyou & Veluswamy, Hari Prakash, 2020. "Evaluation and comparison of gas production potential of the typical four gas hydrate deposits in Shenhu area, South China sea," Energy, Elsevier, vol. 204(C).
    3. Faraz Rajput & Milan Maric & Phillip Servio, 2021. "Amphiphilic Block Copolymers with Vinyl Caprolactam as Kinetic Gas Hydrate Inhibitors," Energies, MDPI, vol. 14(2), pages 1-13, January.
    4. Kamal, Muhammad Shahzad & Hussein, Ibnelwaleed A. & Sultan, Abdullah S. & von Solms, Nicolas, 2016. "Application of various water soluble polymers in gas hydrate inhibition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 206-225.
    5. Long, Zhen & Zhou, Xuebing & Lu, Zhilin & Liang, Deqing, 2022. "Kinetic inhibition performance of N-vinyl caprolactam/isopropylacrylamide copolymers on methane hydrate formation," Energy, Elsevier, vol. 242(C).
    6. Lee, Dongyoung & Go, Woojin & Seo, Yongwon, 2019. "Experimental and computational investigation of methane hydrate inhibition in the presence of amino acids and ionic liquids," Energy, Elsevier, vol. 182(C), pages 632-640.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yanghui & Hu, Wenkang & Tang, Haoran & Wu, Peng & Liu, Tao & You, Zeshao & Yu, Tao & Song, Yongchen, 2023. "Mechanical properties of the interstratified hydrate-bearing sediment in permafrost zones," Energy, Elsevier, vol. 282(C).
    2. Farhadian, Abdolreza & Taheri Rizi, Zahra & Naeiji, Parisa & Mohammad-Taheri, Mahboobeh & Shaabani, Alireza & Aminolroayaei, Mohammad Ali & Yang, Mingjun, 2023. "Promising kinetic gas hydrate inhibitors for developing sour gas reservoirs," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farhadian, Abdolreza & Varfolomeev, Mikhail A. & Rezaeisadat, Morteza & Semenov, Anton P. & Stoporev, Andrey S., 2020. "Toward a bio-based hybrid inhibition of gas hydrate and corrosion for flow assurance," Energy, Elsevier, vol. 210(C).
    2. Zhang, Yongchao & Wan, Yizhao & Liu, Lele & Wang, Daigang & Li, Chengfeng & Liu, Changling & Wu, Nengyou, 2021. "Changes in reaction surface during the methane hydrate dissociation and its implications for hydrate production," Energy, Elsevier, vol. 230(C).
    3. Long, Zhen & Zhou, Xuebing & Lu, Zhilin & Liang, Deqing, 2022. "Kinetic inhibition performance of N-vinyl caprolactam/isopropylacrylamide copolymers on methane hydrate formation," Energy, Elsevier, vol. 242(C).
    4. Shi, Lingli & He, Yong & Lu, Jingsheng & Hou, Guodong & Liang, Deqing, 2021. "Anti-agglomeration evaluation and Raman spectroscopic analysis on mixed biosurfactants for preventing CH4 hydrate blockage in n-octane + water systems," Energy, Elsevier, vol. 229(C).
    5. Salma Elhenawy & Majeda Khraisheh & Fares Almomani & Mohammad A. Al-Ghouti & Mohammad K. Hassan & Ala’a Al-Muhtaseb, 2022. "Towards Gas Hydrate-Free Pipelines: A Comprehensive Review of Gas Hydrate Inhibition Techniques," Energies, MDPI, vol. 15(22), pages 1-44, November.
    6. Li, Yanlong & Wu, Nengyou & Gao, Deli & Chen, Qiang & Liu, Changling & Yang, Daoyong & Jin, Yurong & Ning, Fulong & Tan, Mingjian & Hu, Gaowei, 2021. "Optimization and analysis of gravel packing parameters in horizontal wells for natural gas hydrate production," Energy, Elsevier, vol. 219(C).
    7. André Guerra & Samuel Mathews & Milan Marić & Alejandro D. Rey & Phillip Servio, 2022. "An Integrated Experimental and Computational Platform to Explore Gas Hydrate Promotion, Inhibition, Rheology, and Mechanical Properties at McGill University: A Review," Energies, MDPI, vol. 15(15), pages 1-19, July.
    8. Farhadian, Abdolreza & Taheri Rizi, Zahra & Naeiji, Parisa & Mohammad-Taheri, Mahboobeh & Shaabani, Alireza & Aminolroayaei, Mohammad Ali & Yang, Mingjun, 2023. "Promising kinetic gas hydrate inhibitors for developing sour gas reservoirs," Energy, Elsevier, vol. 282(C).
    9. Shi, Jihao & Li, Junjie & Usmani, Asif Sohail & Zhu, Yuan & Chen, Guoming & Yang, Dongdong, 2021. "Probabilistic real-time deep-water natural gas hydrate dispersion modeling by using a novel hybrid deep learning approach," Energy, Elsevier, vol. 219(C).
    10. Li, Xiao-Yan & Hu, Heng-Qi & Wang, Yi & Li, Xiao-Sen, 2022. "Experimental study of gas-liquid-sand production behaviors during gas hydrates dissociation with sand control screen," Energy, Elsevier, vol. 254(PB).
    11. Yang, Guokun & Liu, Tianle & Aleksandravih, Blinov Pavel & Wang, Yazhou & Feng, Yingtao & Wen, Dayang & Fang, Changliang, 2022. "Temperature regulation effect of low melting point phase change microcapsules for cement slurry in nature gas hydrate-bearing sediments," Energy, Elsevier, vol. 253(C).
    12. Liao, Youqiang & Zheng, Junjie & Wang, Zhiyuan & Sun, Baojiang & Sun, Xiaohui & Linga, Praveen, 2022. "Modeling and characterizing the thermal and kinetic behavior of methane hydrate dissociation in sandy porous media," Applied Energy, Elsevier, vol. 312(C).
    13. Mazlin Idress & Muhammad Afiq Shahril & Ahmad Syahir Zuraidin & Mazuin Jasamai, 2019. "Experimental Investigation of Methane Hydrate Induction Time in the Presence of Cassava Peel as a Hydrate Inhibitor," Energies, MDPI, vol. 12(12), pages 1-11, June.
    14. Mao, Peixiao & Wan, Yizhao & Sun, Jiaxin & Li, Yanlong & Hu, Gaowei & Ning, Fulong & Wu, Nengyou, 2021. "Numerical study of gas production from fine-grained hydrate reservoirs using a multilateral horizontal well system," Applied Energy, Elsevier, vol. 301(C).
    15. Zheng Li & Christine C. Holzammer & Andreas S. Braeuer, 2020. "Analysis of the Dissolution of CH 4 /CO 2 -Mixtures into Liquid Water and the Subsequent Hydrate Formation via In Situ Raman Spectroscopy," Energies, MDPI, vol. 13(4), pages 1-17, February.
    16. Yulia F. Zaripova & Sherzod Razhabov & Roman S. Pavelyev & Svetlana S. Vinogradova & Renat R. Nazmutdinov & Iskander R. Vakhitov & Mikhail A. Varfolomeev, 2022. "Effective Inhibition of Carbon Steel Corrosion by Waterborne Polyurethane Based on N- tert -Butyl Diethanolamine in 2M HCl: Experimental and Computational Findings," Energies, MDPI, vol. 15(5), pages 1-21, March.
    17. Ning, Fulong & Chen, Qiang & Sun, Jiaxin & Wu, Xiang & Cui, Guodong & Mao, Peixiao & Li, Yanlong & Liu, Tianle & Jiang, Guosheng & Wu, Nengyou, 2022. "Enhanced gas production of silty clay hydrate reservoirs using multilateral wells and reservoir reformation techniques: Numerical simulations," Energy, Elsevier, vol. 254(PA).
    18. Alberto Maria Gambelli & Federico Rossi, 2022. "Experimental Characterization of Memory Effect, Anomalous Self-Preservation and Ice-Hydrate Competition, during Methane-Hydrates Formation and Dissociation in a Lab-Scale Apparatus," Sustainability, MDPI, vol. 14(8), pages 1-19, April.
    19. Zhang, Zhengcai & Kusalik, Peter G. & Wu, Nengyou & Liu, Changling & Zhang, Yongchao, 2022. "Molecular simulation study on the stability of methane hydrate confined in slit-shaped pores," Energy, Elsevier, vol. 257(C).
    20. Shen, Zhicong & Wang, Dong & Zheng, Tianyuan, 2023. "Numerical simulations of the synthetic processes and consequences of secondary hydrates during depressurization of a horizontal well in the hydrates production," Energy, Elsevier, vol. 263(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223014391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.