IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8551-d973613.html
   My bibliography  Save this article

Towards Gas Hydrate-Free Pipelines: A Comprehensive Review of Gas Hydrate Inhibition Techniques

Author

Listed:
  • Salma Elhenawy

    (Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar)

  • Majeda Khraisheh

    (Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar)

  • Fares Almomani

    (Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar)

  • Mohammad A. Al-Ghouti

    (Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar)

  • Mohammad K. Hassan

    (Center of Advanced Materials, Qatar University, Doha 2713, Qatar)

  • Ala’a Al-Muhtaseb

    (Department of Petroleum and Chemical Engineering, Sultan Qaboos University, Muskat 123, Oman)

Abstract

Gas hydrate blockage is a major issue that the production and transportation processes in the oil/gas industry faces. The formation of gas hydrates in pipelines results in significant financial losses and serious safety risks. To tackle the flow assurance issues caused by gas hydrate formation in the pipelines, some physical methods and chemical inhibitors are applied by the oil/gas industry. The physical techniques involve subjecting the gas hydrates to thermal heating and depressurization. The alternative method, on the other hand, relies on injecting chemical inhibitors into the pipelines, which affects gas hydrate formation. Chemical inhibitors are classified into high dosage hydrate inhibitors (thermodynamic hydrate inhibitors (THI)) and low dosage hydrate inhibitors (kinetic hydrate inhibitors (KHI) and anti-agglomerates (AAs)). Each chemical inhibitor affects the gas hydrate from a different perspective. The use of physical techniques (thermal heating and depressurization) to inhibit hydrate formation is studied briefly in this review paper. Furthermore, the application of various THIs (alcohols and electrolytes), KHIs (polymeric compounds), and dual function hydrate inhibitors (amino acids, ionic liquids, and nanoparticles) are discussed thoroughly in this study. This review paper aims to provide a complete and comprehensive outlook on the fundamental principles of gas hydrates, and the recent mitigation techniques used by the oil/gas industry to tackle the gas hydrate formation issue. It hopes to provide the chemical engineering platform with ultimate and effective techniques for gas hydrate inhibition.

Suggested Citation

  • Salma Elhenawy & Majeda Khraisheh & Fares Almomani & Mohammad A. Al-Ghouti & Mohammad K. Hassan & Ala’a Al-Muhtaseb, 2022. "Towards Gas Hydrate-Free Pipelines: A Comprehensive Review of Gas Hydrate Inhibition Techniques," Energies, MDPI, vol. 15(22), pages 1-44, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8551-:d:973613
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8551/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8551/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Xin & Fang, Qingchao & Qiu, Zhengsong & Mi, Shiyou & Wang, Zhiyuan & Geng, Qi & Zhang, Yubin, 2022. "Experimental investigation on hydrate anti-agglomerant for oil-free systems in the production pipe of marine natural gas hydrates," Energy, Elsevier, vol. 242(C).
    2. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    3. Liwei Cheng & Limin Wang & Zhi Li & Bei Liu & Guangjin Chen, 2019. "Inhibition Effect of Kinetic Hydrate Inhibitors on the Growth of Methane Hydrate in Gas–Liquid Phase Separation State," Energies, MDPI, vol. 12(23), pages 1-12, November.
    4. Nair, Vishnu Chandrasekharan & Prasad, Siddhant Kumar & Kumar, Rajnish & Sangwai, Jitendra S., 2018. "Energy recovery from simulated clayey gas hydrate reservoir using depressurization by constant rate gas release, thermal stimulation and their combinations," Applied Energy, Elsevier, vol. 225(C), pages 755-768.
    5. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    6. Lee, Dongyoung & Go, Woojin & Seo, Yongwon, 2019. "Experimental and computational investigation of methane hydrate inhibition in the presence of amino acids and ionic liquids," Energy, Elsevier, vol. 182(C), pages 632-640.
    7. Yang, Mingjun & Zheng, Jia-nan & Gao, Yi & Ma, Zhanquan & Lv, Xin & Song, Yongchen, 2019. "Dissociation characteristics of methane hydrates in South China Sea sediments by depressurization," Applied Energy, Elsevier, vol. 243(C), pages 266-273.
    8. Roostaie, M. & Leonenko, Y., 2020. "Gas production from methane hydrates upon thermal stimulation; an analytical study employing radial coordinates," Energy, Elsevier, vol. 194(C).
    9. Kamal, Muhammad Shahzad & Hussein, Ibnelwaleed A. & Sultan, Abdullah S. & von Solms, Nicolas, 2016. "Application of various water soluble polymers in gas hydrate inhibition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 206-225.
    10. Shao, Yazhou & Yang, Longbin & Zhang, Qun & Wang, Shidong & Wang, Kunfang & Xu, Runzhang, 2020. "Numerical study on gas production from methane hydrate reservoir by depressurization in a reactor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Wan, Qing-Cui & Si, Hu & Li, Bo & Yin, Zhen-Yuan & Gao, Qiang & Liu, Shu & Han, Xiao & Chen, Ling-Ling, 2020. "Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization," Applied Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiao-Hui & Chen, Yun & Li, Xing-Xun & Xu, Qiang & Kan, Jing-Yu & Sun, Chang-Yu & Chen, Guang-Jin, 2021. "An exergy-based energy efficiency analysis on gas production from gas hydrates reservoir by brine stimulation combined depressurization method," Energy, Elsevier, vol. 231(C).
    2. Qureshi, M Fahed & Khandelwal, Himanshu & Usadi, Adam & Barckholtz, Timothy A. & Mhadeshwar, Ashish B. & Linga, Praveen, 2022. "CO2 hydrate stability in oceanic sediments under brine conditions," Energy, Elsevier, vol. 256(C).
    3. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).
    4. Liao, Bo & Wang, Jintang & Li, Mei-Chun & Lv, Kaihe & Wang, Qi & Li, Jian & Huang, Xianbing & Wang, Ren & Lv, Xindi & Chen, Zhangxin & Sun, Jinsheng, 2023. "Microscopic molecular and experimental insights into multi-stage inhibition mechanisms of alkylated hydrate inhibitor," Energy, Elsevier, vol. 279(C).
    5. Wang, Bin & Liu, Shuyang & Wang, Pengfei, 2022. "Microwave-assisted high-efficient gas production of depressurization-induced methane hydrate exploitation," Energy, Elsevier, vol. 247(C).
    6. Yanjiang Yu & Kaixiang Shen & Haifeng Zhao, 2024. "Experimental Investigation of Fracture Propagation in Clayey Silt Hydrate-Bearing Sediments," Energies, MDPI, vol. 17(2), pages 1-16, January.
    7. Thakre, Niraj & Jana, Amiya K., 2021. "Physical and molecular insights to Clathrate hydrate thermodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Yan, Jin & Lu, Yi-Yu & Zhong, Dong-Liang & Zou, Zhen-Lin & Li, Jian-Bo, 2019. "Enhanced methane recovery from low-concentration coalbed methane by gas hydrate formation in graphite nanofluids," Energy, Elsevier, vol. 180(C), pages 728-736.
    9. Shi, Lingli & He, Yong & Lu, Jingsheng & Liang, Deqing, 2020. "Effect of dodecyl dimethyl benzyl ammonium chloride on CH4 hydrate growth and agglomeration in oil-water systems," Energy, Elsevier, vol. 212(C).
    10. Dong, Shuang & Yang, Mingjun & Chen, Mingkun & Zheng, Jia-nan & Song, Yongchen, 2022. "Thermodynamics analysis and temperature response mechanism during methane hydrate production by depressurization," Energy, Elsevier, vol. 241(C).
    11. Qin, Xuwen & Liang, Qianyong & Ye, Jianliang & Yang, Lin & Qiu, Haijun & Xie, Wenwei & Liang, Jinqiang & Lu, Jin'an & Lu, Cheng & Lu, Hailong & Ma, Baojin & Kuang, Zenggui & Wei, Jiangong & Lu, Hongfe, 2020. "The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea," Applied Energy, Elsevier, vol. 278(C).
    12. Foroutan, Shima & Mohsenzade, Hanie & Dashti, Ali & Roosta, Hadi, 2021. "New insights into the evaluation of kinetic hydrate inhibitors and energy consumption in rocking and stirred cells," Energy, Elsevier, vol. 218(C).
    13. Li, Bo & Liang, Yun-Pei & Li, Xiao-Sen & Zhou, Lei, 2016. "A pilot-scale study of gas production from hydrate deposits with two-spot horizontal well system," Applied Energy, Elsevier, vol. 176(C), pages 12-21.
    14. Li, Ze-Yu & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen & Xu, Chun-Gang & Yan, Ran, 2019. "The plateau effects and crystal transition study in Tetrahydrofuran (THF)/CO2/H2 hydrate formation processes," Applied Energy, Elsevier, vol. 238(C), pages 195-201.
    15. Long, Zhen & Zhou, Xuebing & Lu, Zhilin & Liang, Deqing, 2022. "Kinetic inhibition performance of N-vinyl caprolactam/isopropylacrylamide copolymers on methane hydrate formation," Energy, Elsevier, vol. 242(C).
    16. Farhadian, Abdolreza & Varfolomeev, Mikhail A. & Rezaeisadat, Morteza & Semenov, Anton P. & Stoporev, Andrey S., 2020. "Toward a bio-based hybrid inhibition of gas hydrate and corrosion for flow assurance," Energy, Elsevier, vol. 210(C).
    17. Liu, Yanzhen & Li, Qingping & Lv, Xin & Yang, Lei & Wang, Junfeng & Qiao, Fen & Zhao, Jiafei & Qi, Huiping, 2023. "The passive effect of clay particles on natural gas hydrate kinetic inhibitors," Energy, Elsevier, vol. 267(C).
    18. Fengyi, Mi & Zhongjin, He & Guosheng, Jiang & Fulong, Ning, 2023. "Molecular insights into the effects of lignin on methane hydrate formation in clay nanopores," Energy, Elsevier, vol. 276(C).
    19. Go, Woojin & Yun, Soyeong & Lee, Dongyoung & Seo, Yongwon, 2022. "Experimental and computational investigation of hydrophilic monomeric substances as novel CO2 hydrate inhibitors and potential synergists," Energy, Elsevier, vol. 244(PB).
    20. Zhang, Zhaobin & Li, Yuxuan & Li, Shouding & He, Jianming & Li, Xiao & Xu, Tao & Lu, Cheng & Qin, Xuwen, 2024. "Optimization of the natural gas hydrate hot water injection production method: Insights from numerical and phase equilibrium analysis," Applied Energy, Elsevier, vol. 361(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8551-:d:973613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.