IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p793-d319377.html
   My bibliography  Save this article

Analysis of the Dissolution of CH 4 /CO 2 -Mixtures into Liquid Water and the Subsequent Hydrate Formation via In Situ Raman Spectroscopy

Author

Listed:
  • Zheng Li

    (Institute of Thermal-, Environmental-, and Resources’ Process Engineering (ITUN), Technische Universität Bergakademie Freiberg (TUBAF), 09599 Freiberg, Germany
    School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China)

  • Christine C. Holzammer

    (Institute of Thermal-, Environmental-, and Resources’ Process Engineering (ITUN), Technische Universität Bergakademie Freiberg (TUBAF), 09599 Freiberg, Germany
    Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Str. 6, 91052 Erlangen, Germany)

  • Andreas S. Braeuer

    (Institute of Thermal-, Environmental-, and Resources’ Process Engineering (ITUN), Technische Universität Bergakademie Freiberg (TUBAF), 09599 Freiberg, Germany)

Abstract

We report an experimental study for the investigation into the suitability of hydrate formation processes for the purification of methane (CH 4 ) from carbon dioxide (CO 2 ) at a sub-cooling temperature of 6 K and a pressure of 4 MPa. The experiments were conducted in a stirred batch reactor. Three different initial CH 4 /CO 2 mixtures with methane fractions of 70.1 mol%, 50.3 mol%, and 28.5 mol% were tested. The separation efficiency was quantified by measuring in situ via Raman spectroscopy the ratios of CH 4 /CO 2 in the gas mixture, the liquid water-rich phase before hydrate formation, and the solid hydrate phase after the onset of the hydrate formation. The results indicated that the main separation effect is obtained due to the preferential dissolution of CO 2 into the liquid water-rich phase before the onset of the hydrate formation.

Suggested Citation

  • Zheng Li & Christine C. Holzammer & Andreas S. Braeuer, 2020. "Analysis of the Dissolution of CH 4 /CO 2 -Mixtures into Liquid Water and the Subsequent Hydrate Formation via In Situ Raman Spectroscopy," Energies, MDPI, vol. 13(4), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:793-:d:319377
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/793/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/793/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Junjie & Loganathan, Niranjan Kumar & Zhao, Jianzhong & Linga, Praveen, 2019. "Clathrate hydrate formation of CO2/CH4 mixture at room temperature: Application to direct transport of CO2-containing natural gas," Applied Energy, Elsevier, vol. 249(C), pages 190-203.
    2. Wang, Fei & Song, Yuan-Mei & Liu, Guo-Qiang & Guo, Gang & Luo, Sheng-Jun & Guo, Rong-Bo, 2018. "Rapid methane hydrate formation promoted by Ag&SDS-coated nanospheres for energy storage," Applied Energy, Elsevier, vol. 213(C), pages 227-234.
    3. Zhong, Dong-Liang & Li, Zheng & Lu, Yi-Yu & Wang, Jia-Le & Yan, Jin, 2015. "Evaluation of CO2 removal from a CO2+CH4 gas mixture using gas hydrate formation in liquid water and THF solutions," Applied Energy, Elsevier, vol. 158(C), pages 133-141.
    4. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    5. Liu, Jun & Ding, Jia-Xiang & Liang, De-Qing, 2018. "Experimental study on hydrate-based gas separation of mixed CH4/CO2 using unstable ice in a silica gel bed," Energy, Elsevier, vol. 157(C), pages 54-64.
    6. Lee, Dongyoung & Go, Woojin & Seo, Yongwon, 2019. "Experimental and computational investigation of methane hydrate inhibition in the presence of amino acids and ionic liquids," Energy, Elsevier, vol. 182(C), pages 632-640.
    7. Cai, Jing & Zhang, Yu & Xu, Chun-Gang & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen, 2018. "Raman spectroscopic studies on carbon dioxide separation from fuel gas via clathrate hydrate in the presence of tetrahydrofuran," Applied Energy, Elsevier, vol. 214(C), pages 92-102.
    8. Yin, Zhenyuan & Huang, Li & Linga, Praveen, 2019. "Effect of wellbore design on the production behaviour of methane hydrate-bearing sediments induced by depressurization," Applied Energy, Elsevier, vol. 254(C).
    9. Li, Zheng & Zhong, Dong-Liang & Lu, Yi-Yu & Yan, Jin & Zou, Zhen-Lin, 2017. "Preferential enclathration of CO2 into tetra-n-butyl phosphonium bromide semiclathrate hydrate in moderate operating conditions: Application for CO2 capture from shale gas," Applied Energy, Elsevier, vol. 199(C), pages 370-381.
    10. Xia, Zhi-Ming & Li, Xiao-Sen & Chen, Zhao-Yang & Li, Gang & Yan, Ke-Feng & Xu, Chun-Gang & Lv, Qiu-Nan & Cai, Jing, 2016. "Hydrate-based CO2 capture and CH4 purification from simulated biogas with synergic additives based on gas solvent," Applied Energy, Elsevier, vol. 162(C), pages 1153-1159.
    11. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouyang, Qian & Zheng, Junjie & Pandey, Jyoti Shanker & von Solms, Nicolas & Linga, Praveen, 2024. "Coupling amino acid injection and slow depressurization with hydrate swapping exploitation: An effective strategy to enhance in-situ CO2 storage in hydrate-bearing sediment," Applied Energy, Elsevier, vol. 366(C).
    2. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    3. Cheng, Zucheng & Sun, Lintao & Liu, Yingying & Jiang, Lanlan & Chen, Bingbing & Song, Yongchen, 2023. "Study on the micro-macro kinetic and amino acid-enhanced separation of CO2-CH4 via sII hydrate," Renewable Energy, Elsevier, vol. 218(C).
    4. Yi, Jie & Zhong, Dong-Liang & Yan, Jin & Lu, Yi-Yu, 2019. "Impacts of the surfactant sulfonated lignin on hydrate based CO2 capture from a CO2/CH4 gas mixture," Energy, Elsevier, vol. 171(C), pages 61-68.
    5. Li, Ze-Yu & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen & Xu, Chun-Gang & Yan, Ran, 2019. "The plateau effects and crystal transition study in Tetrahydrofuran (THF)/CO2/H2 hydrate formation processes," Applied Energy, Elsevier, vol. 238(C), pages 195-201.
    6. Wang, Yan & Zhong, Dong-Liang & Li, Zheng & Li, Jian-Bo, 2020. "Application of tetra-n-butyl ammonium bromide semi-clathrate hydrate for CO2 capture from unconventional natural gases," Energy, Elsevier, vol. 197(C).
    7. Liu, Jun & Ding, Jia-Xiang & Liang, De-Qing, 2018. "Experimental study on hydrate-based gas separation of mixed CH4/CO2 using unstable ice in a silica gel bed," Energy, Elsevier, vol. 157(C), pages 54-64.
    8. Cao, Xinxin & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Mao, Peixiao & Gu, Yuhang & Li, Yanlong & Zhang, Heen & Yu, Yanjiang & Wu, Nengyou, 2023. "Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area," Energy, Elsevier, vol. 270(C).
    9. Zhang, Jidong & Yin, Zhenyuan & Li, Qingping & Li, Shuaijun & Wang, Yi & Li, Xiao-Sen, 2023. "Comparison of fluid production between excess-gas and excess-water hydrate-bearing sediments under depressurization and its implication on energy recovery," Energy, Elsevier, vol. 282(C).
    10. Yiwei Wang & Lin Wang & Zhen Hu & Youli Li & Qiang Sun & Aixian Liu & Lanying Yang & Jing Gong & Xuqiang Guo, 2021. "The Thermodynamic and Kinetic Effects of Sodium Lignin Sulfonate on Ethylene Hydrate Formation," Energies, MDPI, vol. 14(11), pages 1-19, June.
    11. Li, Zheng & Zhong, Dong-Liang & Lu, Yi-Yu & Yan, Jin & Zou, Zhen-Lin, 2017. "Preferential enclathration of CO2 into tetra-n-butyl phosphonium bromide semiclathrate hydrate in moderate operating conditions: Application for CO2 capture from shale gas," Applied Energy, Elsevier, vol. 199(C), pages 370-381.
    12. Liu, Fa-Ping & Li, Ai-Rong & Wang, Cheng & Ma, Yu-Ling, 2023. "Controlling and tuning CO2 hydrate nucleation and growth by metal-based ionic liquids," Energy, Elsevier, vol. 269(C).
    13. Chen, Chang & Zhang, Yu & Li, Xiaosen & Gao, Fei & Chen, Yuru & Chen, Zhaoyang, 2024. "Experimental investigation into gas production from methane hydrate in sediments with different contents of illite clay by depressurization," Energy, Elsevier, vol. 296(C).
    14. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    15. Wan, Qing-Cui & Yin, Zhenyuan & Gao, Qiang & Si, Hu & Li, Bo & Linga, Praveen, 2022. "Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4 + H2O," Applied Energy, Elsevier, vol. 305(C).
    16. Lee, Joonseop & Lee, Dongyoung & Seo, Yongwon, 2021. "Experimental investigation of the exact role of large-molecule guest substances (LMGSs) in determining phase equilibria and structures of natural gas hydrates," Energy, Elsevier, vol. 215(PB).
    17. Xue, Kunpeng & Liu, Yu & Yu, Tao & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2023. "Numerical simulation of gas hydrate production in shenhu area using depressurization: The effect of reservoir permeability heterogeneity," Energy, Elsevier, vol. 271(C).
    18. Kou, Xuan & Zhang, Heng & Li, Xiao-Sen & Chen, Zhao-Yang & Wang, Yi, 2024. "Methane hydrate phase transition in marine clayey sediments: Enhanced structure change and solid migration," Applied Energy, Elsevier, vol. 368(C).
    19. Li, Nan & Zhang, Jie & Xia, Ming-Ji & Sun, Chang-Yu & Liu, Yan-Sheng & Chen, Guang-Jin, 2021. "Gas production from heterogeneous hydrate-bearing sediments by depressurization in a large-scale simulator," Energy, Elsevier, vol. 234(C).
    20. Thakre, Niraj & Jana, Amiya K., 2021. "Physical and molecular insights to Clathrate hydrate thermodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:793-:d:319377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.