IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v279y2023ics0360544223013154.html
   My bibliography  Save this article

Experimental investigation of novel molten borate fuel cell supported by an artificial neural network for electrolyte composition selection

Author

Listed:
  • Martsinchyk, Aliaksandr
  • Milewski, Jaroslaw
  • Dybiński, Olaf
  • Szczęśniak, Arkadiusz
  • Siekierski, Maciej
  • Świrski, Konrad

Abstract

This research proposes idea of new kind of high temperature fuel cell – Molten Borate Fuel Cell (MBFC). The idea of new fuel cell is based on technical modification of well-known Molten Carbonate Fuel Cell by changing electrolyte composition to a borate-based mixture. The cell was tested in laboratory conditions as proof-of-concept investigation and reached OCV at around 1 V and 0.05 A/cm2 of current density. The optimization of borate-based electrolyte composition was conducted with a help of ANN and experimentally verified. The deep feedforward artificial neural network (DFF ANN) was proposed in this study to model the behavior of the new Molten Borate Fuel Cell. This modeling approach is well-known as a potent tool for dealing with complicated modeling and prediction tasks. This study presented many network designs for a range of operating circumstances. The ANN has been used to model and optimize the SOFC, MCFC, and PEMFC, but the design and performance of the MBFC were not previously investigated. The innovative type of fuel cells at issue - Molten Borate Fuel Cells - were designed and optimized using a deep learning algorithm. The most advanced model provides a dynamic forecast of fuel cell operation, taking thermal-flow and electrolyte material factors into account. With an average inaccuracy of 0.3%, all the models performed fair enough. An ANN-based technique may also be used to improve cell operating parameters. Moreover, the operating composition of a novel molten borate electrolyte might be improved in terms of electrochemical performance of the fuel cell.

Suggested Citation

  • Martsinchyk, Aliaksandr & Milewski, Jaroslaw & Dybiński, Olaf & Szczęśniak, Arkadiusz & Siekierski, Maciej & Świrski, Konrad, 2023. "Experimental investigation of novel molten borate fuel cell supported by an artificial neural network for electrolyte composition selection," Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223013154
    DOI: 10.1016/j.energy.2023.127921
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223013154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szczęśniak, Arkadiusz & Milewski, Jarosław & Szabłowski, Łukasz & Bujalski, Wojciech & Dybiński, Olaf, 2020. "Dynamic model of a molten carbonate fuel cell 1 kW stack," Energy, Elsevier, vol. 200(C).
    2. Deng, Yimin & Dewil, Raf & Appels, Lise & Li, Shuo & Baeyens, Jan & Degrève, Jan & Wang, Guirong, 2021. "Thermo-chemical water splitting: Selection of priority reversible redox reactions by multi-attribute decision making," Renewable Energy, Elsevier, vol. 170(C), pages 800-810.
    3. Jin, Xinfang & Ku, Anthony & Ohara, Brandon & Huang, Kevin & Singh, Surinder, 2021. "Performance analysis of a 550MWe solid oxide fuel cell and air turbine hybrid system powered by coal-derived syngas," Energy, Elsevier, vol. 222(C).
    4. Wang, Xusheng & Lv, Xiaojing & Mi, Xicong & Spataru, Catalina & Weng, Yiwu, 2022. "Coordinated control approach for load following operation of SOFC-GT hybrid system," Energy, Elsevier, vol. 248(C).
    5. Seyam, Shaimaa & Dincer, Ibrahim & Agelin-Chaab, Martin, 2021. "Investigation of two hybrid aircraft propulsion and powering systems using alternative fuels," Energy, Elsevier, vol. 232(C).
    6. Lukasz Szablowski & Olaf Dybinski & Arkadiusz Szczesniak & Jaroslaw Milewski, 2022. "Mathematical Model of Steam Reforming in the Anode Channel of a Molten Carbonate Fuel Cell," Energies, MDPI, vol. 15(2), pages 1-13, January.
    7. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jarosław Milewski & Piotr Ryś & Anna Krztoń-Maziopa & Grażyna Żukowska & Karolina Majewska & Magdalena Zybert & Jacek Kowalczyk & Maciej Siekierski, 2024. "Structural Investigation of Orthoborate-Based Electrolytic Materials for Fuel Cell Applications," Energies, MDPI, vol. 17(9), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    2. Ma, Zhiwen & Davenport, Patrick & Saur, Genevieve, 2022. "System and technoeconomic analysis of solar thermochemical hydrogen production," Renewable Energy, Elsevier, vol. 190(C), pages 294-308.
    3. Baccioli, Andrea & Liponi, Angelica & Milewski, Jarosław & Szczęśniak, Arkadiusz & Desideri, Umberto, 2021. "Hybridization of an internal combustion engine with a molten carbonate fuel cell for marine applications," Applied Energy, Elsevier, vol. 298(C).
    4. Deng, Yimin & Li, Shuo & Appels, Lise & Zhang, Huili & Sweygers, Nick & Baeyens, Jan & Dewil, Raf, 2023. "Steam reforming of ethanol by non-noble metal catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    5. Zhang, Lihui & Wang, Jianing & Li, Songrui, 2022. "Regional suitability analysis of the rural biogas power generation industry:A case of China," Renewable Energy, Elsevier, vol. 194(C), pages 293-306.
    6. Chen, Jinwei & Hu, Zhenchao & Lu, Jinzhi & Zhang, Huisheng & Weng, Shilie, 2022. "A novel control strategy with an anode variable geometry ejector for a SOFC-GT hybrid system," Energy, Elsevier, vol. 261(PA).
    7. Fathy, Ahmed & Rezk, Hegazy, 2022. "Political optimizer based approach for estimating SOFC optimal parameters for static and dynamic models," Energy, Elsevier, vol. 238(PC).
    8. Zainal, Bidattul Syirat & Ker, Pin Jern & Mohamed, Hassan & Ong, Hwai Chyuan & Fattah, I.M.R. & Rahman, S.M. Ashrafur & Nghiem, Long D. & Mahlia, T M Indra, 2024. "Recent advancement and assessment of green hydrogen production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Xu, Yuhao & Luo, Xiaobing & Tu, Zhengkai & Siew Hwa Chan,, 2022. "Multi-criteria assessment of solid oxide fuel cell–combined cooling, heating, and power system model for residential application," Energy, Elsevier, vol. 259(C).
    10. Huang, Yu & Turan, Ali, 2022. "Flexible power generation based on solid oxide fuel cell and twin-shaft free turbine engine: Mechanical equilibrium running and design analysis," Applied Energy, Elsevier, vol. 315(C).
    11. Yin, Linfei & Liu, Dongduan, 2023. "Adaptive multistep model predictive control for tubular grid-connected solid oxide fuel cells," Renewable Energy, Elsevier, vol. 216(C).
    12. Paweł Niszczota & Maciej Chmielewski & Marian Gieras, 2022. "Fuel-Water Emulsion as an Alternative Fuel for Gas Turbines in the Context of Combustion Process Properties—A Review," Energies, MDPI, vol. 15(23), pages 1-21, November.
    13. Pavel Atănăsoae & Radu Dumitru Pentiuc & Laurențiu Dan Milici, 2022. "Opportunity Analysis of Cogeneration and Trigeneration Solutions: An Application in the Case of a Drug Factory," Energies, MDPI, vol. 15(8), pages 1-27, April.
    14. Kroyan, Yuri & Wojcieszyk, Michał & Kaario, Ossi & Larmi, Martti, 2022. "Modeling the impact of sustainable aviation fuel properties on end-use performance and emissions in aircraft jet engines," Energy, Elsevier, vol. 255(C).
    15. Sun, Xue & Li, Xiaofei & Zeng, Jingxin & Song, Qiang & Yang, Zhen & Duan, Yuanyuan, 2023. "Energy and exergy analysis of a novel solar-hydrogen production system with S–I thermochemical cycle," Energy, Elsevier, vol. 283(C).
    16. Li, Haolong & Wei, Wei & Liu, Fengxia & Xu, Xiaofei & Li, Zhiyi & Liu, Zhijun, 2023. "Identification of internal polarization dynamics for solid oxide fuel cells investigated by electrochemical impedance spectroscopy and distribution of relaxation times," Energy, Elsevier, vol. 267(C).
    17. Qiao Yuan & Xiongzhuang Li & Shuo Han & Sijia Wang & Mengting Wang & Rentian Chen & Sergei Kudashev & Tao Wei & Daifen Chen, 2024. "Performance Analysis and Optimization of SOFC/GT Hybrid Systems: A Review," Energies, MDPI, vol. 17(5), pages 1-22, March.
    18. Fu, Quanrong & Tian, Chunyu & Hun, Lianming & Wang, Xin & Li, Zhiyi & Liu, Zhijun & Wei, Wei, 2024. "Ni agglomeration and performance degradation of solid oxide fuel cell: A model-based quantitative study and microstructure optimization," Energy, Elsevier, vol. 289(C).
    19. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Wang, Zhanxue, 2023. "A comprehensive evaluation of ducted fan hybrid engines integrated with fuel cells for sustainable aviation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    20. Viviana Cigolotti & Matteo Genovese & Petronilla Fragiacomo, 2021. "Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems," Energies, MDPI, vol. 14(16), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223013154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.