IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v202y2024ics1364032124004611.html
   My bibliography  Save this article

A comprehensive review on recent breakthroughs in hydrogen production from hydrogen sulfide decomposition: Harnessing the power of plasma

Author

Listed:
  • Gautam, Rupali
  • Kumar, Sanat
  • Upadhyayula, Sreedevi

Abstract

With escalating energy demands, the quest for clean and sustainable energy solutions is intensifying. H2 serves as a clean energy source and plays a crucial role in numerous industrial processes. The global interest in the hydrogen (H2) economy is burgeoning, emphasizing the importance of H2 production and utilization. Various methods are being explored for H2 production, encompassing both fossil-based and renewable sources worldwide. Hydrogen sulfide (H2S) which is an off-gas in refineries and anaerobic processes can be decomposed to produce pure H2 and sulfur. H2S emitted from industrial processes and anaerobic decomposition of organic matter as is a significant environmental concern due to its corrosive and toxic nature. Numerous techniques, including thermal, thermo-catalytic, and electrocatalytic approaches, are employed for H2S decomposition. The plasma-catalytic route has emerged as a promising technology in recent years but remains at lower technology readiness level. Factors influencing the effectiveness of H2S decomposition through plasma catalysis include feed composition, flow rate, reaction kinetics and reactor design, electrode types, plasma generator, retention time, and catalyst. This article reviews the different routes of H2 production with focus on H2S decomposition to H2, comparative analysis of various H2S decomposition methods with detailed review of plasma based H2S decomposition. It delves into the characteristics of different plasma sources, comparing their performance alongside various process parameters and catalysts. Additionally, the paper explores the potential and feasibility of large-scale application of plasma catalysis for H2 production. It has been found through the analysis that hydrogen production can vary from 20 % to 98 % for different methods. With the selection of a suitable process and optimization of process parameters, above 90 % H2S conversion and equivalent hydrogen can be achieved. Among these, the literature suggests that the plasma-catalysis process currently at TRL 6 exhibited above 95 % conversion along with several energy and environmental benefits, demanding large-scale studies in the future.

Suggested Citation

  • Gautam, Rupali & Kumar, Sanat & Upadhyayula, Sreedevi, 2024. "A comprehensive review on recent breakthroughs in hydrogen production from hydrogen sulfide decomposition: Harnessing the power of plasma," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004611
    DOI: 10.1016/j.rser.2024.114735
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124004611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114735?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deng, Yimin & Dewil, Raf & Appels, Lise & Li, Shuo & Baeyens, Jan & Degrève, Jan & Wang, Guirong, 2021. "Thermo-chemical water splitting: Selection of priority reversible redox reactions by multi-attribute decision making," Renewable Energy, Elsevier, vol. 170(C), pages 800-810.
    2. Amelio, A. & Van de Voorde, T. & Creemers, C. & Degrève, J. & Darvishmanesh, S. & Luis, P. & Van der Bruggen, B., 2016. "Comparison between exergy and energy analysis for biodiesel production," Energy, Elsevier, vol. 98(C), pages 135-145.
    3. Huen Lee & Jong-won Lee & Do Youn Kim & Jeasung Park & Yu-Taek Seo & Huang Zeng & Igor L. Moudrakovski & Christopher I. Ratcliffe & John A. Ripmeester, 2005. "Tuning clathrate hydrates for hydrogen storage," Nature, Nature, vol. 434(7034), pages 743-746, April.
    4. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    5. George, Adwek & Shen, Boxiong & Craven, Michael & Wang, Yaolin & Kang, Dongrui & Wu, Chunfei & Tu, Xin, 2021. "A Review of Non-Thermal Plasma Technology: A novel solution for CO2 conversion and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zainal, Bidattul Syirat & Ker, Pin Jern & Mohamed, Hassan & Ong, Hwai Chyuan & Fattah, I.M.R. & Rahman, S.M. Ashrafur & Nghiem, Long D. & Mahlia, T M Indra, 2024. "Recent advancement and assessment of green hydrogen production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    3. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    4. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    6. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    7. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    8. Samuel Simon Araya & Fan Zhou & Simon Lennart Sahlin & Sobi Thomas & Christian Jeppesen & Søren Knudsen Kær, 2019. "Fault Characterization of a Proton Exchange Membrane Fuel Cell Stack," Energies, MDPI, vol. 12(1), pages 1-17, January.
    9. Sun, Xue & Li, Xiaofei & Zeng, Jingxin & Song, Qiang & Yang, Zhen & Duan, Yuanyuan, 2023. "Energy and exergy analysis of a novel solar-hydrogen production system with S–I thermochemical cycle," Energy, Elsevier, vol. 283(C).
    10. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    11. Freida Ozavize Ayodele & Siti Indati Mustapa & Bamidele Victor Ayodele & Norsyahida Mohammad, 2020. "An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    12. Ho, Leong Chuan & Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "HBGS (hydrate based gas separation) process for carbon dioxide capture employing an unstirred reactor with cyclopentane," Energy, Elsevier, vol. 63(C), pages 252-259.
    13. Hegazy Rezk & Mokhtar Aly & Rania M. Ghoniem, 2023. "Robust Fuzzy Logic MPPT Using Gradient-Based Optimization for PEMFC Power System," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    14. Han Xue & Linhai Li & Yiqun Wang & Youhua Lu & Kai Cui & Zhiyuan He & Guoying Bai & Jie Liu & Xin Zhou & Jianjun Wang, 2024. "Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Park, Joungho & Kang, Sungho & Kim, Sunwoo & Kim, Hana & Kim, Sang-Kyung & Lee, Jay H., 2024. "Optimizing green hydrogen systems: Balancing economic viability and reliability in the face of supply-demand volatility," Applied Energy, Elsevier, vol. 368(C).
    16. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    17. Lee, Timothy & Fu, Jintao & Basile, Victoria & Corsi, John S. & Wang, Zeyu & Detsi, Eric, 2020. "Activated alumina as value-added byproduct from the hydrolysis of hierarchical nanoporous aluminum with pure water to generate hydrogen fuel," Renewable Energy, Elsevier, vol. 155(C), pages 189-196.
    18. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    19. Baena-Moreno, Francisco M. & Pastor-Pérez, Laura & Zhang, Zhien & Reina, T.R., 2020. "Stepping towards a low-carbon economy. Formic acid from biogas as case of study," Applied Energy, Elsevier, vol. 268(C).
    20. Burin Yodwong & Damien Guilbert & Matheepot Phattanasak & Wattana Kaewmanee & Melika Hinaje & Gianpaolo Vitale, 2020. "Faraday’s Efficiency Modeling of a Proton Exchange Membrane Electrolyzer Based on Experimental Data," Energies, MDPI, vol. 13(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.