Air Conditioning Systems Fault Detection and Diagnosis-Based Sensing and Data-Driven Approaches
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Tian Wang & Meina Qiao & Mengyi Zhang & Yi Yang & Hichem Snoussi, 2020. "Data-driven prognostic method based on self-supervised learning approaches for fault detection," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1611-1619, October.
- Samuel Boahen & Kwang Ho Lee & Jong Min Choi, 2019. "Refrigerant Charge Fault Detection and Diagnosis Algorithm for Water-to-Water Heat Pump Unit," Energies, MDPI, vol. 12(3), pages 1-25, February.
- Tang, Rui & Wang, Shengwei, 2019. "Model predictive control for thermal energy storage and thermal comfort optimization of building demand response in smart grids," Applied Energy, Elsevier, vol. 242(C), pages 873-882.
- Wang, Liping & Braun, James & Dahal, Sujit, 2023. "An evolving learning-based fault detection and diagnosis method: Case study for a passive chilled beam system," Energy, Elsevier, vol. 265(C).
- Li, Wenqiang & Gong, Guangcai & Fan, Houhua & Peng, Pei & Chun, Liang, 2020. "Meta-learning strategy based on user preferences and a machine recommendation system for real-time cooling load and COP forecasting," Applied Energy, Elsevier, vol. 270(C).
- Wu, Jianghong & Xu, Zhe & Jiang, Feng, 2019. "Analysis and development trends of Chinese energy efficiency standards for room air conditioners," Energy Policy, Elsevier, vol. 125(C), pages 368-383.
- Zhao, Yang & Li, Tingting & Zhang, Xuejun & Zhang, Chaobo, 2019. "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 85-101.
- Aguilera, José Joaquín & Meesenburg, Wiebke & Ommen, Torben & Markussen, Wiebke Brix & Poulsen, Jonas Lundsted & Zühlsdorf, Benjamin & Elmegaard, Brian, 2022. "A review of common faults in large-scale heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Antonio Gálvez & Alberto Diez-Olivan & Dammika Seneviratne & Diego Galar, 2021. "Fault Detection and RUL Estimation for Railway HVAC Systems Using a Hybrid Model-Based Approach," Sustainability, MDPI, vol. 13(12), pages 1-18, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bode, Gerrit & Thul, Simon & Baranski, Marc & Müller, Dirk, 2020. "Real-world application of machine-learning-based fault detection trained with experimental data," Energy, Elsevier, vol. 198(C).
- Kenneth R. Uren & George van Schoor & Martin van Eldik & Johannes J. A. de Bruin, 2020. "An Energy Graph-Based Approach to Fault Diagnosis of a Transcritical CO 2 Heat Pump," Energies, MDPI, vol. 13(7), pages 1-34, April.
- Fan, Cheng & Lei, Yutian & Sun, Yongjun & Mo, Like, 2023. "Novel transformer-based self-supervised learning methods for improved HVAC fault diagnosis performance with limited labeled data," Energy, Elsevier, vol. 278(PB).
- Samuel Boahen & Kwesi Mensah & Selorm Kwaku Anka & Kwang Ho Lee & Jong Min Choi, 2021. "Fault Detection Algorithm for Multiple-Simultaneous Refrigerant Charge and Secondary Fluid Flow Rate Faults in Heat Pumps," Energies, MDPI, vol. 14(13), pages 1-19, June.
- Ssembatya, Martin & Claridge, David E., 2024. "Quantitative fault detection and diagnosis methods for vapour compression chillers: Exploring the potential for field-implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
- Ding, Yifei & Zhuang, Jichao & Ding, Peng & Jia, Minping, 2022. "Self-supervised pretraining via contrast learning for intelligent incipient fault detection of bearings," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
- Jiao, P.H. & Chen, J.J. & Cai, X. & Wang, L.L. & Zhao, Y.L. & Zhang, X.H. & Chen, W.G., 2021. "Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling," Applied Energy, Elsevier, vol. 302(C).
- Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air-Conditioning Systems via Data Mining. Part I: Methodology," Energies, MDPI, vol. 14(1), pages 1-15, December.
- Antonio Rosato & Francesco Guarino & Mohammad El Youssef & Alfonso Capozzoli & Massimiliano Masullo & Luigi Maffei, 2022. "Faulty Operation of Coils’ and Humidifier Valves in a Typical Air-Handling Unit: Experimental Impact Assessment of Indoor Comfort and Patterns of Operating Parameters under Mediterranean Climatic Cond," Energies, MDPI, vol. 15(18), pages 1-38, September.
- Shariq, M. Hasan & Hughes, Ben Richard, 2020. "Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
- Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control for Demand- and Market-Responsive building energy management by leveraging active latent heat storage," Applied Energy, Elsevier, vol. 327(C).
- Liang, Xinbin & Liu, Zhuoxuan & Wang, Jie & Jin, Xinqiao & Du, Zhimin, 2023. "Uncertainty quantification-based robust deep learning for building energy systems considering distribution shift problem," Applied Energy, Elsevier, vol. 337(C).
- Mohammed Majid Abdulrazzaq & Nehad T. A. Ramaha & Alaa Ali Hameed & Mohammad Salman & Dong Keon Yon & Norma Latif Fitriyani & Muhammad Syafrudin & Seung Won Lee, 2024. "Consequential Advancements of Self-Supervised Learning (SSL) in Deep Learning Contexts," Mathematics, MDPI, vol. 12(5), pages 1-42, March.
- Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
- Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
- Zhe Tian & Chuang Ye & Jie Zhu & Jide Niu & Yakai Lu, 2023. "Accelerating Optimal Control Strategy Generation for HVAC Systems Using a Scenario Reduction Method: A Case Study," Energies, MDPI, vol. 16(7), pages 1-20, March.
- Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
- Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
- Pei-Hsuan Tsai & Chih-Jou Chen & Ho-Chin Yang, 2021. "Using Porter’s Diamond Model to Assess the Competitiveness of Taiwan’s Solar Photovoltaic Industry," SAGE Open, , vol. 11(1), pages 21582440209, January.
More about this item
Keywords
air conditioning; data-driven approaches; energy efficiency; fault detection and diagnosis; power optimization; process history-based; sensor technologies; simultaneous faults;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4721-:d:1171525. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.