IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v188y2023ics1364032123007475.html
   My bibliography  Save this article

Empirical validation of building energy simulation model input parameter for multizone commercial building during the cooling season

Author

Listed:
  • Yoon, Y.
  • Jung, S.
  • Im, P.
  • Salonvaara, M.
  • Bhandari, M.
  • Kunwar, N.

Abstract

This paper presents a critical advancement in Building Energy Modeling (BEM) through an empirical validation approach using a high-quality dataset from a multizone commercial office building in Oak Ridge, TN, USA. BEM is widely utilized in diverse construction applications, but its effectiveness relies on the accuracy of its predictions. The study focuses on empirical validation of input parameters in BEM, including building envelope data, infiltration modeling, and rooftop unit system performance curves. The validation of simulation input parameters leads to substantial improvements in the accuracy of simulation results. Notable both NMBE and cv (RMSE) values are reduced by 0.5 % for indoor air temperature and 17 % for indoor air relative humidity compared to the previous model. At the system level, both NMBE and cv (RMSE) values are reduced by 2 % for fan energy consumption and 4 % for cooling energy consumption, compared to the previous model. A literature review highlights a significant gap in empirical validation studies, which predominantly concentrate on either component-level or whole building validation. Furthermore, many studies employ simplified setups that may not faithfully represent the complexities of multizone commercial buildings. This paper distinguishes itself by emphasizing the critical importance of component-level input parameter validation. It underlines the need to validate data related to building envelope components and HVAC system performance curves, resulting in more accurate simulation outcomes. The utilization of actual multizone commercial building data enhances the study's practical relevance. In summary, this research underscores the pivotal role of input parameter validation in enhancing the accuracy and reliability of BEM.

Suggested Citation

  • Yoon, Y. & Jung, S. & Im, P. & Salonvaara, M. & Bhandari, M. & Kunwar, N., 2023. "Empirical validation of building energy simulation model input parameter for multizone commercial building during the cooling season," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123007475
    DOI: 10.1016/j.rser.2023.113889
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123007475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buonomano, Annamaria & Guarino, Francesco, 2020. "The impact of thermophysical properties and hysteresis effects on the energy performance simulation of PCM wallboards: Experimental studies, modelling, and validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    2. Baloch, Ashfaque Ahmed & Shaikh, Pervez Hameed & Shaikh, Faheemullah & Leghari, Zohaib Hussain & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2018. "Simulation tools application for artificial lighting in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3007-3026.
    3. Zhang, Rongpeng & Hong, Tianzhen, 2017. "Modeling of HVAC operational faults in building performance simulation," Applied Energy, Elsevier, vol. 202(C), pages 178-188.
    4. Giovanni Barone & Annamaria Buonomano & Cesare Forzano & Adolfo Palombo, 2019. "Building Energy Performance Analysis: An Experimental Validation of an In-House Dynamic Simulation Tool through a Real Test Room," Energies, MDPI, vol. 12(21), pages 1-39, October.
    5. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
    6. Im, Piljae & Joe, Jaewan & Bae, Yeonjin & New, Joshua R., 2020. "Empirical validation of building energy modeling for multi-zones commercial buildings in cooling season," Applied Energy, Elsevier, vol. 261(C).
    7. Zhao, Yang & Li, Tingting & Zhang, Xuejun & Zhang, Chaobo, 2019. "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 85-101.
    8. Pang, Zhihong & Chen, Yan & Zhang, Jian & O'Neill, Zheng & Cheng, Hwakong & Dong, Bing, 2020. "Nationwide HVAC energy-saving potential quantification for office buildings with occupant-centric controls in various climates," Applied Energy, Elsevier, vol. 279(C).
    9. Deb, C. & Schlueter, A., 2021. "Review of data-driven energy modelling techniques for building retrofit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Herrando, M. & Coca-Ortegón, A. & Guedea, I. & Fueyo, N., 2023. "Experimental validation of a solar system based on hybrid photovoltaic-thermal collectors and a reversible heat pump for the energy provision in non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    11. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2023. "Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models," Applied Energy, Elsevier, vol. 340(C).
    2. Li, Tingting & Zhou, Yangze & Zhao, Yang & Zhang, Chaobo & Zhang, Xuejun, 2022. "A hierarchical object oriented Bayesian network-based fault diagnosis method for building energy systems," Applied Energy, Elsevier, vol. 306(PB).
    3. Dongsu Kim & Yongjun Lee & Kyungil Chin & Pedro J. Mago & Heejin Cho & Jian Zhang, 2023. "Implementation of a Long Short-Term Memory Transfer Learning (LSTM-TL)-Based Data-Driven Model for Building Energy Demand Forecasting," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    4. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    5. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    6. Shazia Noor & Hadeed Ashraf & Muhammad Sultan & Zahid Mahmood Khan, 2020. "Evaporative Cooling Options for Building Air-Conditioning: A Comprehensive Study for Climatic Conditions of Multan (Pakistan)," Energies, MDPI, vol. 13(12), pages 1-23, June.
    7. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2022. "Physically Consistent Neural Networks for building thermal modeling: Theory and analysis," Applied Energy, Elsevier, vol. 325(C).
    8. Barone, Giovanni & Zacharopoulos, Aggelos & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Mondol, Jayanta & Palombo, Adolfo & Pugsley, Adrian & Smyth, Mervyn, 2022. "Concentrating PhotoVoltaic glazing (CoPVG) system: Modelling and simulation of smart building façade," Energy, Elsevier, vol. 238(PB).
    9. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    10. Antonio Rosato & Francesco Guarino & Sergio Sibilio & Evgueniy Entchev & Massimiliano Masullo & Luigi Maffei, 2021. "Healthy and Faulty Experimental Performance of a Typical HVAC System under Italian Climatic Conditions: Artificial Neural Network-Based Model and Fault Impact Assessment," Energies, MDPI, vol. 14(17), pages 1-41, August.
    11. Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
    12. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    13. Zhong, Fangliang & Calautit, John Kaiser & Wu, Yupeng, 2022. "Assessment of HVAC system operational fault impacts and multiple faults interactions under climate change," Energy, Elsevier, vol. 258(C).
    14. Rafał Krupiński, 2020. "Virtual Reality System and Scientific Visualisation for Smart Designing and Evaluating of Lighting," Energies, MDPI, vol. 13(20), pages 1-17, October.
    15. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    16. Hyo-Jun Kim & Young-Hum Cho, 2021. "Optimal Control Method of Variable Air Volume Terminal Unit System," Energies, MDPI, vol. 14(22), pages 1-15, November.
    17. Alexandru Pîrjan & Simona-Vasilica Oprea & George Căruțașu & Dana-Mihaela Petroșanu & Adela Bâra & Cristina Coculescu, 2017. "Devising Hourly Forecasting Solutions Regarding Electricity Consumption in the Case of Commercial Center Type Consumers," Energies, MDPI, vol. 10(11), pages 1-36, October.
    18. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    19. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
    20. Fu, Chun & Miller, Clayton, 2022. "Using Google Trends as a proxy for occupant behavior to predict building energy consumption," Applied Energy, Elsevier, vol. 310(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123007475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.