Dual-stream transformer-attention fusion network for short-term carbon price prediction
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.133374
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Heidarpanah, Mohammadreza & Hooshyaripor, Farhad & Fazeli, Meysam, 2023. "Daily electricity price forecasting using artificial intelligence models in the Iranian electricity market," Energy, Elsevier, vol. 263(PE).
- Bai, Yun & Deng, Shuyun & Pu, Ziqiang & Li, Chuan, 2024. "Carbon price forecasting using leaky integrator echo state networks with the framework of decomposition-reconstruction-integration," Energy, Elsevier, vol. 305(C).
- Ali, Fahad & Khurram, Muhammad Usman & Sensoy, Ahmet & Vo, Xuan Vinh, 2024. "Green cryptocurrencies and portfolio diversification in the era of greener paths," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Shenghua Xiong & Chunfeng Wang & Zhenming Fang & Dan Ma, 2019. "Multi-Step-Ahead Carbon Price Forecasting Based on Variational Mode Decomposition and Fast Multi-Output Relevance Vector Regression Optimized by the Multi-Objective Whale Optimization Algorithm," Energies, MDPI, vol. 12(1), pages 1-21, January.
- Wu, Han & Liang, Yan & Gao, Xiao-Zhi, 2023. "Left-right brain interaction inspired bionic deep network for forecasting significant wave height," Energy, Elsevier, vol. 278(PB).
- Li, Dezhi & Li, Shuo & Zhang, Shubo & Sun, Jianrui & Wang, Licheng & Wang, Kai, 2022. "Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine," Energy, Elsevier, vol. 250(C).
- Li, Jingmiao & Liu, Dehong, 2023. "Carbon price forecasting based on secondary decomposition and feature screening," Energy, Elsevier, vol. 278(PA).
- Ozdemir, Ali Can & Buluş, Kurtuluş & Zor, Kasım, 2022. "Medium- to long-term nickel price forecasting using LSTM and GRU networks," Resources Policy, Elsevier, vol. 78(C).
- Li, Dan & Li, Yijun & Wang, Chaoqun & Chen, Min & Wu, Qi, 2023. "Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks," Applied Energy, Elsevier, vol. 331(C).
- Qin, Chaoyong & Qin, Dongling & Jiang, Qiuxian & Zhu, Bangzhu, 2024. "Forecasting carbon price with attention mechanism and bidirectional long short-term memory network," Energy, Elsevier, vol. 299(C).
- Wu, Han & Liang, Yan & Heng, Jiani, 2023. "Pulse-diagnosis-inspired multi-feature extraction deep network for short-term electricity load forecasting," Applied Energy, Elsevier, vol. 339(C).
- Gao, Feng & Shao, Xueyan, 2022. "A novel interval decomposition ensemble model for interval carbon price forecasting," Energy, Elsevier, vol. 243(C).
- Tschora, Léonard & Pierre, Erwan & Plantevit, Marc & Robardet, Céline, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Applied Energy, Elsevier, vol. 313(C).
- Li, Chuang & Li, Guojie & Wang, Keyou & Han, Bei, 2022. "A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems," Energy, Elsevier, vol. 259(C).
- Khan, Zulfiqar Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2023. "Dual stream network with attention mechanism for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 338(C).
- Wang, Jujie & Cui, Quan & He, Maolin, 2022. "Hybrid intelligent framework for carbon price prediction using improved variational mode decomposition and optimal extreme learning machine," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
- Zhou, Wenhao & Zeng, Bo & Wang, Jianzhou & Luo, Xiaoshuang & Liu, Xianzhou, 2021. "Forecasting Chinese carbon emissions using a novel grey rolling prediction model," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
- Xu, Yan & Liu, Tianli & Du, Pei, 2024. "Volatility forecasting of crude oil futures based on Bi-LSTM-Attention model: The dynamic role of the COVID-19 pandemic and the Russian-Ukrainian conflict," Resources Policy, Elsevier, vol. 88(C).
- Du, Pei & Yang, Dongchuan & Li, Yanzhao & Wang, Jianzhou, 2024. "An innovative interpretable combined learning model for wind speed forecasting," Applied Energy, Elsevier, vol. 358(C).
- Jia, Chenyu & Tian, Yukai & Shi, Yuanhao & Jia, Jianfang & Wen, Jie & Zeng, Jianchao, 2023. "State of health prediction of lithium-ion batteries based on bidirectional gated recurrent unit and transformer," Energy, Elsevier, vol. 285(C).
- Zhou, Jianguo & Xu, Zhongtian, 2023. "A novel three-stage hybrid learning paradigm based on a multi-decomposition strategy, optimized relevance vector machine, and error correction for multi-step forecasting of precious metal prices," Resources Policy, Elsevier, vol. 80(C).
- Du, Pei & Guo, Ju’e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2021. "Multi-step metal prices forecasting based on a data preprocessing method and an optimized extreme learning machine by marine predators algorithm," Resources Policy, Elsevier, vol. 74(C).
- Zhang, Junting & Liu, Haifei & Bai, Wei & Li, Xiaojing, 2024. "A hybrid approach of wavelet transform, ARIMA and LSTM model for the share price index futures forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
- Huang, Wenyang & Gao, Tianxiao & Hao, Yun & Wang, Xiuqing, 2023. "Transformer-based forecasting for intraday trading in the Shanghai crude oil market: Analyzing open-high-low-close prices," Energy Economics, Elsevier, vol. 127(PA).
- Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
- Wu, Han & Liang, Yan & Gao, Xiao-Zhi & Du, Pei, 2024. "Auditory-circuit-motivated deep network with application to short-term electricity price forecasting," Energy, Elsevier, vol. 288(C).
- Chaturvedi, Shobhit & Rajasekar, Elangovan & Natarajan, Sukumar & McCullen, Nick, 2022. "A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India," Energy Policy, Elsevier, vol. 168(C).
- Zhang, Wen & Wu, Zhibin & Zeng, Xiaojun & Zhu, Changhui, 2023. "An ensemble dynamic self-learning model for multiscale carbon price forecasting," Energy, Elsevier, vol. 263(PC).
- Léonard Tschora & Erwan Pierre & Marc Plantevit & Céline Robardet, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Post-Print hal-03621974, HAL.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wu, Han & Liang, Yan & Gao, Xiao-Zhi & Du, Pei, 2024. "Auditory-circuit-motivated deep network with application to short-term electricity price forecasting," Energy, Elsevier, vol. 288(C).
- Bai, Yun & Deng, Shuyun & Pu, Ziqiang & Li, Chuan, 2024. "Carbon price forecasting using leaky integrator echo state networks with the framework of decomposition-reconstruction-integration," Energy, Elsevier, vol. 305(C).
- Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
- Liu, Shuihan & Xie, Gang & Wang, Zhengzhong & Wang, Shouyang, 2024. "A secondary decomposition-ensemble framework for interval carbon price forecasting," Applied Energy, Elsevier, vol. 359(C).
- Beibei Hu & Yunhe Cheng, 2023. "Prediction of Regional Carbon Price in China Based on Secondary Decomposition and Nonlinear Error Correction," Energies, MDPI, vol. 16(11), pages 1-22, May.
- Wu, Han & Gao, Xiao-Zhi & Heng, Jia-Ni, 2024. "Bio-multisensory-inspired gate-attention coordination model for forecasting short-term significant wave height," Energy, Elsevier, vol. 294(C).
- Sun, Qingqing & Chen, Hong & Long, Ruyin & Chen, Jiawei, 2024. "Integrated prediction of carbon price in China based on heterogeneous structural information and wall-value constraints," Energy, Elsevier, vol. 306(C).
- Wang, Ning & Guo, Ziyu & Shang, Dawei & Li, Keyuyang, 2024. "Carbon trading price forecasting in digitalization social change era using an explainable machine learning approach: The case of China as emerging country evidence," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
- Loizidis, Stylianos & Kyprianou, Andreas & Georghiou, George E., 2024. "Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets," Applied Energy, Elsevier, vol. 363(C).
- Yingjie Zhu & Yongfa Chen & Qiuling Hua & Jie Wang & Yinghui Guo & Zhijuan Li & Jiageng Ma & Qi Wei, 2024. "A Hybrid Model for Carbon Price Forecasting Based on Improved Feature Extraction and Non-Linear Integration," Mathematics, MDPI, vol. 12(10), pages 1-26, May.
- Yin, Hao & Yin, Yiding & Li, Hanhong & Zhu, Jianbin & Xian, Zikang & Tang, Yanshu & Xiao, Liexi & Rong, Jiayu & Li, Chen & Zhang, Haitao & Xie, Zhifeng & Meng, Anbo, 2025. "Carbon emissions trading price forecasting based on temporal-spatial multidimensional collaborative attention network and segment imbalance regression," Applied Energy, Elsevier, vol. 377(PA).
- Liu, Longlong & Zhou, Suyu & Jie, Qian & Du, Pei & Xu, Yan & Wang, Jianzhou, 2024. "A robust time-varying weight combined model for crude oil price forecasting," Energy, Elsevier, vol. 299(C).
- Karol Pilot & Alicja Ganczarek-Gamrot & Krzysztof Kania, 2024. "Dealing with Anomalies in Day-Ahead Market Prediction Using Machine Learning Hybrid Model," Energies, MDPI, vol. 17(17), pages 1-20, September.
- Yifei Chen & Zhihan Fu, 2023. "Multi-Step Ahead Forecasting of the Energy Consumed by the Residential and Commercial Sectors in the United States Based on a Hybrid CNN-BiLSTM Model," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
- Xu, Huifeng & Hu, Feihu & Liang, Xinhao & Zhao, Guoqing & Abugunmi, Mohammad, 2024. "A framework for electricity load forecasting based on attention mechanism time series depthwise separable convolutional neural network," Energy, Elsevier, vol. 299(C).
- Yao, Qiuxiang & Wang, Linyang & Ma, Mingming & Ma, Li & He, Lei & Ma, Duo & Sun, Ming, 2024. "A quantitative investigation on pyrolysis behaviors of metal ion-exchanged coal macerals by interpretable machine learning algorithms," Energy, Elsevier, vol. 300(C).
- Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
- Hasnain Iftikhar & Josue E. Turpo-Chaparro & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Forecasting Day-Ahead Electricity Prices for the Italian Electricity Market Using a New Decomposition—Combination Technique," Energies, MDPI, vol. 16(18), pages 1-23, September.
- Zeyu Zhang & Xiaoqian Liu & Xiling Zhang & Zhishan Yang & Jian Yao, 2024. "Carbon Price Forecasting Using Optimized Sliding Window Empirical Wavelet Transform and Gated Recurrent Unit Network to Mitigate Data Leakage," Energies, MDPI, vol. 17(17), pages 1-22, August.
- Hilger, Hannes & Witthaut, Dirk & Dahmen, Manuel & Rydin Gorjão, Leonardo & Trebbien, Julius & Cramer, Eike, 2024. "Multivariate scenario generation of day-ahead electricity prices using normalizing flows," Applied Energy, Elsevier, vol. 367(C).
More about this item
Keywords
Carbon price prediction; Transformer; Dual-stream structure; Attention mechanism;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031505. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.