IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej41-4-fezzi.html
   My bibliography  Save this article

Size Matters: Estimation Sample Length and Electricity Price Forecasting Accuracy

Author

Listed:
  • Carlo Fezzi and Luca Mosetti

Abstract

Short-term electricity price forecasting models are typically estimated via rolling windows, i.e. by using only the most recent observations. Nonetheless, the literature does not provide guidelines on how to select the optimal size of such windows. This paper shows that determining the appropriate window prior to estimation dramatically improves forecasting performances. In addition, it proposes a simple two-step approach to choose the best performing models and window sizes. The value of this methodology is illustrated by analyzing hourly datasets from two large power markets (Nord Pool and IPEX) with a selection of eleven different forecasting models. Incidentally, our empirical application reveals that simple models, such as a simple linear regression (SLR) with only two parameters, can perform unexpectedly well if estimated on extremely short samples. Surprisingly, in the Nord Pool, such SLR is the best performing model in 13 out 24 trading periods.

Suggested Citation

  • Carlo Fezzi and Luca Mosetti, 2020. "Size Matters: Estimation Sample Length and Electricity Price Forecasting Accuracy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 231-254.
  • Handle: RePEc:aen:journl:ej41-4-fezzi
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=3534
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvia Golia & Luigi Grossi & Matteo Pelagatti, 2022. "Machine Learning Models and Intra-Daily Market Information for the Prediction of Italian Electricity Prices," Forecasting, MDPI, vol. 5(1), pages 1-21, December.
    2. Guo, Bowei & Newbery, David, 2021. "The cost of uncoupling GB interconnectors," Energy Policy, Elsevier, vol. 158(C).
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Bashiri Behmiri, Niaz & Fezzi, Carlo & Ravazzolo, Francesco, 2023. "Incorporating air temperature into mid-term electricity load forecasting models using time-series regressions and neural networks," Energy, Elsevier, vol. 278(C).
    5. Saidjon Shiralievich Tavarov & Alexander Sidorov & Zsolt Čonka & Murodbek Safaraliev & Pavel Matrenin & Mihail Senyuk & Svetlana Beryozkina & Inga Zicmane, 2023. "Control of Operational Modes of an Urban Distribution Grid under Conditions of Uncertainty," Energies, MDPI, vol. 16(8), pages 1-18, April.
    6. Carlo Fezzi & Valeria Fanghella, 2020. "Real-time estimation of the short-run impact of COVID-19 on economic activity using electricity market data," DEM Working Papers 2020/8, Department of Economics and Management.
    7. Carlo Fezzi & Valeria Fanghella, 2020. "Real-Time Estimation of the Short-Run Impact of COVID-19 on Economic Activity Using Electricity Market Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 885-900, August.
    8. Carlo Fezzi & Valeria Fanghella, 2020. "Real-time estimation of the short-run impact of COVID-19 on economic activity using electricity market data," Papers 2007.03477, arXiv.org.
    9. Fezzi, Carlo & Fanghella, Valeria, 2021. "Tracking GDP in real-time using electricity market data: Insights from the first wave of COVID-19 across Europe," European Economic Review, Elsevier, vol. 139(C).
    10. Paul Ghelasi & Florian Ziel, 2024. "From day-ahead to mid and long-term horizons with econometric electricity price forecasting models," Papers 2406.00326, arXiv.org, revised Aug 2024.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej41-4-fezzi. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.