IDEAS home Printed from https://ideas.repec.org/a/wsi/ccexxx/v07y2016i02ns2010007816500044.html
   My bibliography  Save this article

Climate Impact On Energy Demand For Space Heating In Iceland

Author

Listed:
  • REZA FAZELI

    (School of Engineering and Natural Sciences, University of Iceland, Sæmundargata, 101 Reykjavík, Iceland)

  • BRYNHILDUR DAVIDSDOTTIR

    (School of Engineering and Natural Sciences, University of Iceland, Sæmundargata, 101 Reykjavík, Iceland)

  • JONAS HLYNUR HALLGRIMSSON

    (#x2020;Faculty of Economics, University of Iceland, Sæmundargata, 101 Reykjavík, Iceland)

Abstract

A major impact of climate change is expected to materialize on energy demand for space heating and cooling needs in the residential sector. To quantify this impact, a set of regression models were tested to study the relation between residential energy demand for space heating in Iceland and explanatory variables such as Heating Degree Days and GDP per capita. Considering the nonstationarity of the time-series, three methods were studied to cope with this condition: Cointegration, differencing and detrending.The evaluation statistics of the three models for the validation period showed that the modified detrending approach is the most reliable method. It became obvious that including the seasonal dummy variables and AR component significantly improve the power of the model to predict monthly energy demand for residential space heating in Iceland. The developed model can be used to project climate related changes in demand for low-geothermal heat.

Suggested Citation

  • Reza Fazeli & Brynhildur Davidsdottir & Jonas Hlynur Hallgrimsson, 2016. "Climate Impact On Energy Demand For Space Heating In Iceland," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-23, May.
  • Handle: RePEc:wsi:ccexxx:v:07:y:2016:i:02:n:s2010007816500044
    DOI: 10.1142/S2010007816500044
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2010007816500044
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2010007816500044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olivier Deschênes & Michael Greenstone, 2011. "Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 152-185, October.
    2. Mansur, Erin T. & Mendelsohn, Robert & Morrison, Wendy, 2008. "Climate change adaptation: A study of fuel choice and consumption in the US energy sector," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 175-193, March.
    3. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    4. Donald H. Rosenthal & Howard K. Gruenspecht & Emily A. Moran, 1995. "Effects of Global Warming on Energy Use for Space Heating and Cooling in the United States," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-96.
    5. William R. Cline, 1992. "Economics of Global Warming, The," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 39, April.
    6. Auffhammer, Maximilian & Mansur, Erin T., 2014. "Measuring climatic impacts on energy consumption: A review of the empirical literature," Energy Economics, Elsevier, vol. 46(C), pages 522-530.
    7. Baxter, Lester W. & Calandri, Kevin, 1992. "Global warming and electricity demand : A study of California," Energy Policy, Elsevier, vol. 20(3), pages 233-244, March.
    8. Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
    9. Vaage, Kjell, 2000. "Heating technology and energy use: a discrete/continuous choice approach to Norwegian household energy demand," Energy Economics, Elsevier, vol. 22(6), pages 649-666, December.
    10. Henley, Andrew & Peirson, John, 1998. "Residential energy demand and the interaction of price and temperature: British experimental evidence," Energy Economics, Elsevier, vol. 20(2), pages 157-171, April.
    11. Sarak, H & Satman, A, 2003. "The degree-day method to estimate the residential heating natural gas consumption in Turkey: a case study," Energy, Elsevier, vol. 28(9), pages 929-939.
    12. Moral-Carcedo, Julian & Vicens-Otero, Jose, 2005. "Modelling the non-linear response of Spanish electricity demand to temperature variations," Energy Economics, Elsevier, vol. 27(3), pages 477-494, May.
    13. Guilherme Depaula & Robert Mendelsohn, 2010. "Development And The Impact Of Climate Change On Energy Demand: Evidence From Brazil," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 1(03), pages 187-208.
    14. Robert Mendelsohn (ed.), 2001. "Global Warming and the American Economy," Books, Edward Elgar Publishing, number 2304.
    15. OrtizBeviá, M.J. & RuizdeElvira, A. & Alvarez-García, F.J., 2014. "The influence of meteorological variability on the mid-term evolution of the electricity load," Energy, Elsevier, vol. 76(C), pages 850-856.
    16. Sailor, D.J & Pavlova, A.A, 2003. "Air conditioning market saturation and long-term response of residential cooling energy demand to climate change," Energy, Elsevier, vol. 28(9), pages 941-951.
    17. Sailor, David J, 2001. "Relating residential and commercial sector electricity loads to climate—evaluating state level sensitivities and vulnerabilities," Energy, Elsevier, vol. 26(7), pages 645-657.
    18. Franses, P. H., 1990. "Testing For Seasonal Unit Roots In Monthly Data," Econometric Institute Archives 272393, Erasmus University Rotterdam.
    19. World Bank, 2005. "World Development Indicators 2005," World Bank Publications - Books, The World Bank Group, number 12426.
    20. World Bank, 2005. "World Development Indicators 2005," World Bank Publications - Books, The World Bank Group, number 12425.
    21. Henley, Andrew & Peirson, John, 1997. "Non-linearities in Electricity Demand and Temperature: Parametric versus Non-parametric Methods," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(1), pages 149-162, February.
    22. Erdogdu, Erkan, 2007. "Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey," Energy Policy, Elsevier, vol. 35(2), pages 1129-1146, February.
    23. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
    24. Peirson, John & Henley, Andrew, 1994. "Electricity load and temperature : Issues in dynamic specification," Energy Economics, Elsevier, vol. 16(4), pages 235-243, October.
    25. Ruth, Matthias & Lin, Ai-Chen, 2006. "Regional energy demand and adaptations to climate change: Methodology and application to the state of Maryland, USA," Energy Policy, Elsevier, vol. 34(17), pages 2820-2833, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Mancini & Gianluigi Lo Basso, 2020. "How Climate Change Affects the Building Energy Consumptions Due to Cooling, Heating, and Electricity Demands of Italian Residential Sector," Energies, MDPI, vol. 13(2), pages 1-24, January.
    2. Yuanzheng Li & Wenjing Wang & Yating Wang & Yashu Xin & Tian He & Guosong Zhao, 2020. "A Review of Studies Involving the Effects of Climate Change on the Energy Consumption for Building Heating and Cooling," IJERPH, MDPI, vol. 18(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fazeli, Reza & Davidsdottir, Brynhildur & Hallgrimsson, Jonas Hlynur, 2016. "Residential energy demand for space heating in the Nordic countries: Accounting for interfuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1210-1226.
    2. Auffhammer, Maximilian & Mansur, Erin T., 2014. "Measuring climatic impacts on energy consumption: A review of the empirical literature," Energy Economics, Elsevier, vol. 46(C), pages 522-530.
    3. Li, Jianglong & Yang, Lisha & Long, Houyin, 2018. "Climatic impacts on energy consumption: Intensive and extensive margins," Energy Economics, Elsevier, vol. 71(C), pages 332-343.
    4. Marilyn Brown & Matt Cox & Ben Staver & Paul Baer, 2016. "Modeling climate-driven changes in U.S. buildings energy demand," Climatic Change, Springer, vol. 134(1), pages 29-44, January.
    5. Randazzo, Teresa & De Cian, Enrica & Mistry, Malcolm N., 2020. "Air conditioning and electricity expenditure: The role of climate in temperate countries," Economic Modelling, Elsevier, vol. 90(C), pages 273-287.
    6. Harish, Santosh & Singh, Nishmeet & Tongia, Rahul, 2020. "Impact of temperature on electricity demand: Evidence from Delhi and Indian states," Energy Policy, Elsevier, vol. 140(C).
    7. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    8. Ozhegov, Evgeniy & Popova, Evgeniya, 2017. "Demand for electricity and weather conditions: Nonparametric analysis," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 46, pages 55-73.
    9. Rafat Mahmood & Sundus Saleemi & Sajid Amin, 2016. "Impact of Climate Change on Electricity Demand: A Case Study of Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 55(1), pages 29-47.
    10. Roberto Roson & Enrica de Cian & Elisa Lanzi, 2007. "The Impact of Temperature Change on Energy Demand a Dynamic Panel Analysis," Working Papers 2007_06, Department of Economics, University of Venice "Ca' Foscari".
    11. Hekkenberg, M. & Moll, H.C. & Uiterkamp, A.J.M. Schoot, 2009. "Dynamic temperature dependence patterns in future energy demand models in the context of climate change," Energy, Elsevier, vol. 34(11), pages 1797-1806.
    12. Auffhammer, Maximilian, 2022. "Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    13. Marilyn A. Brown & Matt Cox & Ben Staver & Paul Baer, 2016. "Modeling climate-driven changes in U.S. buildings energy demand," Climatic Change, Springer, vol. 134(1), pages 29-44, January.
    14. Zhang, Mingyang & Zhang, Kaiwen & Hu, Wuyang & Zhu, Bangzhu & Wang, Ping & Wei, Yi-Ming, 2020. "Exploring the climatic impacts on residential electricity consumption in Jiangsu, China," Energy Policy, Elsevier, vol. 140(C).
    15. Matthew Ranson & Lauren Morris & Alex Kats-Rubin, 2014. "Climate Change and Space Heating Energy Demand: A Review of the Literature," NCEE Working Paper Series 201407, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Dec 2014.
    16. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    17. Maximilian Auffhammer & Anin Aroonruengsawat, 2011. "Simulating the impacts of climate change, prices and population on California’s residential electricity consumption," Climatic Change, Springer, vol. 109(1), pages 191-210, December.
    18. Gupta, Eshita, 2012. "Global warming and electricity demand in the rapidly growing city of Delhi: A semi-parametric variable coefficient approach," Energy Economics, Elsevier, vol. 34(5), pages 1407-1421.
    19. Hekkenberg, M. & Benders, R.M.J. & Moll, H.C. & Schoot Uiterkamp, A.J.M., 2009. "Indications for a changing electricity demand pattern: The temperature dependence of electricity demand in the Netherlands," Energy Policy, Elsevier, vol. 37(4), pages 1542-1551, April.
    20. Daniel C. Steinberg & Bryan K. Mignone & Jordan Macknick & Yinong Sun & Kelly Eurek & Andrew Badger & Ben Livneh & Kristen Averyt, 2020. "Decomposing supply-side and demand-side impacts of climate change on the US electricity system through 2050," Climatic Change, Springer, vol. 158(2), pages 125-139, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ccexxx:v:07:y:2016:i:02:n:s2010007816500044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/cce/cce.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.