IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v277y2023ics0360544223007466.html
   My bibliography  Save this article

Proposal and multi-criteria optimization of a novel biomass-based and PEMfuel cell system for generating clean power for building applications

Author

Listed:
  • Mohammadi, Zahra
  • Ahmadi, Pouria
  • Ashjaee, Mehdi

Abstract

The current research presents a novel integrated energy system to generate clean and sustainable power for building applications. The system uses a proton exchange membrane (PEM) fuel cell to generate power and heat from syngas, as well as a dual-ejector organic flash cycle (DOEFC) to recover waste heat from the upper process efficiently. From a technological, economic, and environmental aspect, the system is examined. To figure out the system's best operation point, a two-criteria optimization is shown to seek the lower cost and emission as well as higher efficiency of the system. Moreover, a parametric study is performed to reveal the influence of several key parameters on the system performance. The results pinpoint that this system has energy and exergy efficiencies that are around 37.65% and 23.77%, respectively. Among the components of this system, Afterburner (5.84 MW), PEM-FC (5.04 MW), and selective CO oxidizer (3.32 MW) are responsible for the greatest amount of exergy destruction rate. In addition, it is worthy noting that, the highest contribution of the total exergy destruction is due to the irreversibilities of the fuel cell. Furthermore, the results of this system's two-objective optimization show that the best solution point has a net output power of 2.66 MW and a total cost rate of 5.39 $/h.

Suggested Citation

  • Mohammadi, Zahra & Ahmadi, Pouria & Ashjaee, Mehdi, 2023. "Proposal and multi-criteria optimization of a novel biomass-based and PEMfuel cell system for generating clean power for building applications," Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223007466
    DOI: 10.1016/j.energy.2023.127352
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223007466
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127352?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mondal, Subha & De, Sudipta, 2017. "Ejector based organic flash combined power and refrigeration cycle (EBOFCP&RC) – A scheme for low grade waste heat recovery," Energy, Elsevier, vol. 134(C), pages 638-648.
    2. Aghaali, Habib & Ångström, Hans-Erik, 2015. "A review of turbocompounding as a waste heat recovery system for internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 813-824.
    3. Zhang, Tong & Wang, Peiqi & Chen, Huicui & Pei, Pucheng, 2018. "A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition," Applied Energy, Elsevier, vol. 223(C), pages 249-262.
    4. Yang, Puqing & Zhang, Houcheng, 2015. "Parametric analysis of an irreversible proton exchange membrane fuel cell/absorption refrigerator hybrid system," Energy, Elsevier, vol. 85(C), pages 458-467.
    5. Alijanpour sheshpoli, Mohamad & Mousavi Ajarostaghi, Seyed Soheil & Delavar, Mojtaba Aghajani, 2018. "Waste heat recovery from a 1180 kW proton exchange membrane fuel cell (PEMFC) system by Recuperative organic Rankine cycle (RORC)," Energy, Elsevier, vol. 157(C), pages 353-366.
    6. Chen, Huicui & Pei, Pucheng & Song, Mancun, 2015. "Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells," Applied Energy, Elsevier, vol. 142(C), pages 154-163.
    7. Behzadi, Amirmohammad & Arabkoohsar, Ahmad & Gholamian, Ehsan, 2020. "Multi-criteria optimization of a biomass-fired proton exchange membrane fuel cell integrated with organic rankine cycle/thermoelectric generator using different gasification agents," Energy, Elsevier, vol. 201(C).
    8. S. M. Seyed Mahmoudi & Niloufar Sarabchi & Mortaza Yari & Marc A. Rosen, 2019. "Exergy and Exergoeconomic Analyses of a Combined Power Producing System including a Proton Exchange Membrane Fuel Cell and an Organic Rankine Cycle," Sustainability, MDPI, vol. 11(12), pages 1-25, June.
    9. Abdolalipouradl, Mehran & Mohammadkhani, Farzad & Khalilarya, Shahram, 2020. "A comparative analysis of novel combined flash-binary cycles for Sabalan geothermal wells: Thermodynamic and exergoeconomic viewpoints," Energy, Elsevier, vol. 209(C).
    10. Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
    11. Al-Nimr, Moh’d Ahmad & Tashtoush, Bourhan & Hasan, Alabas, 2020. "A novel hybrid solar ejector cooling system with thermoelectric generators," Energy, Elsevier, vol. 198(C).
    12. Braimakis, Konstantinos, 2021. "Solar ejector cooling systems: A review," Renewable Energy, Elsevier, vol. 164(C), pages 566-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammadi, Zahra & Ahmadi, Pouria & Ashjaee, Mehdi, 2024. "Comparative transient assessment and optimization of battery and hydrogen energy storage systems for near-zero energy buildings," Renewable Energy, Elsevier, vol. 220(C).
    2. Chen, Ke & Luo, Zongkai & Zou, Guofu & He, Dandi & Xiong, Zhongzhuang & Zhou, Yu & Chen, Ben, 2024. "Multi-objective optimization of gradient gas diffusion layer structures for enhancing proton exchange membrane fuel cell performance based on response surface methodology and non-dominated sorting gen," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai, Tao & Zoghi, Mohammad & Abed, Hooman & Chauhan, Bhupendra Singh & Ahmed, Ahmed Najat, 2023. "Exergy-economic study and multi-objective optimization of a geothermal-based combined organic flash cycle and PEMFC for poly-generation purpose," Energy, Elsevier, vol. 268(C).
    2. Pei, Pucheng & Jia, Xiaoning & Xu, Huachi & Li, Pengcheng & Wu, Ziyao & Li, Yuehua & Ren, Peng & Chen, Dongfang & Huang, Shangwei, 2018. "The recovery mechanism of proton exchange membrane fuel cell in micro-current operation," Applied Energy, Elsevier, vol. 226(C), pages 1-9.
    3. Ke Song & Yimin Wang & Xiao Hu & Jing Cao, 2020. "Online Prediction of Vehicular Fuel Cell Residual Lifetime Based on Adaptive Extended Kalman Filter," Energies, MDPI, vol. 13(23), pages 1-21, November.
    4. Zuo, Jian & Lv, Hong & Zhou, Daming & Xue, Qiong & Jin, Liming & Zhou, Wei & Yang, Daijun & Zhang, Cunman, 2021. "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application," Applied Energy, Elsevier, vol. 281(C).
    5. Alessandro Arrigoni & Valeria Arosio & Andrea Basso Peressut & Saverio Latorrata & Giovanni Dotelli, 2022. "Greenhouse Gas Implications of Extending the Service Life of PEM Fuel Cells for Automotive Applications: A Life Cycle Assessment," Clean Technol., MDPI, vol. 4(1), pages 1-17, February.
    6. Yu, Zeting & Feng, Chunyu & Lai, Yanhua & Xu, Guoping & Wang, Daohan, 2022. "Performance assessment and optimization of two novel cogeneration systems integrating proton exchange membrane fuel cell with organic flash cycle for low temperature geothermal heat recovery," Energy, Elsevier, vol. 243(C).
    7. Zhang, Caizhi & Zeng, Tao & Wu, Qi & Deng, Chenghao & Chan, Siew Hwa & Liu, Zhixiang, 2021. "Improved efficiency maximization strategy for vehicular dual-stack fuel cell system considering load state of sub-stacks through predictive soft-loading," Renewable Energy, Elsevier, vol. 179(C), pages 929-944.
    8. Chen, Hong & Zhan, Zhigang & Jiang, Panxing & Sun, Yahao & Liao, Liwen & Wan, Xiongbiao & Du, Qing & Chen, Xiaosong & Song, Hao & Zhu, Ruijie & Shu, Zhanhong & Li, Shang & Pan, Mu, 2022. "Whole life cycle performance degradation test and RUL prediction research of fuel cell MEA," Applied Energy, Elsevier, vol. 310(C).
    9. Han, Yuan & Lai, Cong & Li, Jiarui & Zhang, Zhufeng & Zhang, Houcheng & Hou, Shujin & Wang, Fu & Zhao, Jiapei & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Elastocaloric cooler for waste heat recovery from proton exchange membrane fuel cells," Energy, Elsevier, vol. 238(PA).
    10. Lorenzo, Charles & Bouquain, David & Hibon, Samuel & Hissel, Daniel, 2021. "Synthesis of degradation mechanisms and of their impacts on degradation rates on proton-exchange membrane fuel cells and lithium-ion nickel–manganese–cobalt batteries in hybrid transport applicati," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    11. Razmi, Amir Reza & Arabkoohsar, Ahmad & Nami, Hossein, 2020. "Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system," Energy, Elsevier, vol. 210(C).
    12. Singh, B. & Mohamed, W.A.N.W. & Hamani, M.N.F. & Sofiya, K.Z.N.A., 2021. "Enhancement of low grade waste heat recovery from a fuel cell using a thermoelectric generator module with swirl flows," Energy, Elsevier, vol. 236(C).
    13. Pei, Pucheng & Chen, Dongfang & Wu, Ziyao & Ren, Peng, 2019. "Nonlinear methods for evaluating and online predicting the lifetime of fuel cells," Applied Energy, Elsevier, vol. 254(C).
    14. Zhang, Ruiyuan & Min, Ting & Chen, Li & Kang, Qinjun & He, Ya-Ling & Tao, Wen-Quan, 2019. "Pore-scale and multiscale study of effects of Pt degradation on reactive transport processes in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Mohammadnia, Ali & Ziapour, Behrooz M. & Sedaghati, Farzad & Rosendahl, Lasse & Rezania, Alireza, 2021. "Fan operating condition effect on performance of self- cooling thermoelectric generator system," Energy, Elsevier, vol. 224(C).
    16. Shu, Qingzhu & Shi, Jiefu & Li, Zhuxin & Xing, Danmin & Sun, Xin & Zhang, Yong & Song, Shuqin & Tang, Yu & Yang, Shuxiu & Gao, Han & Xia, Chuxuan & Zhao, Mingming & Li, Xufeng & Zhao, Hong, 2024. "Failure of Au-coated metallic bipolar plates for fuel cell in a 3-kW stack under the new European driving cycle," Applied Energy, Elsevier, vol. 355(C).
    17. Zhu, Wanchao & Han, Jitian & Ge, Yi & Yang, Jinwen & Liang, Wenxing, 2024. "Multi-criteria optimization of a combined power and freshwater system using modified NSGA-II and AHP-entropy-topsis," Renewable Energy, Elsevier, vol. 227(C).
    18. Behzadi, Amirmohammad & Arabkoohsar, Ahmad & Gholamian, Ehsan, 2020. "Multi-criteria optimization of a biomass-fired proton exchange membrane fuel cell integrated with organic rankine cycle/thermoelectric generator using different gasification agents," Energy, Elsevier, vol. 201(C).
    19. Sun, Wen & Feng, Li & Abed, Azher M. & Sharma, Aman & Arsalanloo, Akbar, 2022. "Thermoeconomic assessment of a renewable hybrid RO/PEM electrolyzer integrated with Kalina cycle and solar dryer unit using response surface methodology (RSM)," Energy, Elsevier, vol. 260(C).
    20. Li, Tianyu & Liu, Huiying & Wang, Hui & Yao, Yongming, 2020. "Hierarchical predictive control-based economic energy management for fuel cell hybrid construction vehicles," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223007466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.