IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v134y2017icp638-648.html
   My bibliography  Save this article

Ejector based organic flash combined power and refrigeration cycle (EBOFCP&RC) – A scheme for low grade waste heat recovery

Author

Listed:
  • Mondal, Subha
  • De, Sudipta

Abstract

In the present study a conventional waste heat driven organic flash power cycle (OFPC) utilizing R245fa as working fluid is modified by replacing its low pressure throttle valve with an ejector. R245fa coming out from the vapour separator at saturated liquid state is accelerated in the nozzle of the ejector to ensure that saturated vapour from evaporator can enter to the ejector as secondary flow and total mass of R245fa at the exit of the diffuser of the ejector be at condenser pressure. The modified cycle is designated as Ejector based organic flash combined power and refrigeration cycle (EBOFCP&RC). Analysis shows that with varying flash pressure cycle power output initially increases and becomes a maximum corresponding to an optimum flash pressure. However, refrigeration effect increases monotonically with an increase in flash pressure. Also the proposed cycle can yield higher thermal efficiency compared to conventional OFPC. A compressor is to be incorporated between the evaporator and the ejector to maintain a desirable refrigeration effect for higher condenser temperature (say 40 °C).

Suggested Citation

  • Mondal, Subha & De, Sudipta, 2017. "Ejector based organic flash combined power and refrigeration cycle (EBOFCP&RC) – A scheme for low grade waste heat recovery," Energy, Elsevier, vol. 134(C), pages 638-648.
  • Handle: RePEc:eee:energy:v:134:y:2017:i:c:p:638-648
    DOI: 10.1016/j.energy.2017.06.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217310654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barkhordarian, Orbel & Behbahaninia, Ali & Bahrampoury, Rasool, 2017. "A novel ammonia-water combined power and refrigeration cycle with two different cooling temperature levels," Energy, Elsevier, vol. 120(C), pages 816-826.
    2. Wang, E.H. & Zhang, H.G. & Fan, B.Y. & Ouyang, M.G. & Zhao, Y. & Mu, Q.H., 2011. "Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery," Energy, Elsevier, vol. 36(5), pages 3406-3418.
    3. Mondal, Subha & De, Sudipta, 2015. "Transcritical CO2 power cycle – Effects of regenerative heating using turbine bleed gas at intermediate pressure," Energy, Elsevier, vol. 87(C), pages 95-103.
    4. Wang, Jiangfeng & Dai, Yiping & Zhang, Taiyong & Ma, Shaolin, 2009. "Parametric analysis for a new combined power and ejector–absorption refrigeration cycle," Energy, Elsevier, vol. 34(10), pages 1587-1593.
    5. Wang, Jiangfeng & Zhao, Pan & Niu, Xiaoqiang & Dai, Yiping, 2012. "Parametric analysis of a new combined cooling, heating and power system with transcritical CO2 driven by solar energy," Applied Energy, Elsevier, vol. 94(C), pages 58-64.
    6. Ho, Tony & Mao, Samuel S. & Greif, Ralph, 2012. "Increased power production through enhancements to the Organic Flash Cycle (OFC)," Energy, Elsevier, vol. 45(1), pages 686-695.
    7. Cayer, Emmanuel & Galanis, Nicolas & Desilets, Martin & Nesreddine, Hakim & Roy, Philippe, 2009. "Analysis of a carbon dioxide transcritical power cycle using a low temperature source," Applied Energy, Elsevier, vol. 86(7-8), pages 1055-1063, July.
    8. Hung, T.C. & Shai, T.Y. & Wang, S.K., 1997. "A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat," Energy, Elsevier, vol. 22(7), pages 661-667.
    9. Ho, Tony & Mao, Samuel S. & Greif, Ralph, 2012. "Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy," Energy, Elsevier, vol. 42(1), pages 213-223.
    10. Wang, Jiangfeng & Yan, Zhequan & Wang, Man & Ma, Shaolin & Dai, Yiping, 2013. "Thermodynamic analysis and optimization of an (organic Rankine cycle) ORC using low grade heat source," Energy, Elsevier, vol. 49(C), pages 356-365.
    11. Mondal, Subha & De, Sudipta, 2017. "Power by waste heat recovery from low temperature industrial flue gas by Organic Flash Cycle (OFC) and transcritical-CO2 power cycle: A comparative study through combined thermodynamic and economic an," Energy, Elsevier, vol. 121(C), pages 832-840.
    12. Mondal, Subha & De, Sudipta, 2015. "CO2 based power cycle with multi-stage compression and intercooling for low temperature waste heat recovery," Energy, Elsevier, vol. 90(P1), pages 1132-1143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prakash, M. & Sarkar, A. & Sarkar, J. & Chakraborty, J.P. & Mondal, S.S. & Sahoo, R.R., 2019. "Performance assessment of novel biomass gasification based CCHP systems integrated with syngas production," Energy, Elsevier, vol. 167(C), pages 379-390.
    2. Tang, Yongzhi & Liu, Zhongliang & Shi, Can & Li, Yanxia, 2018. "A novel steam ejector with pressure regulation to optimize the entrained flow passage for performance improvement in MED-TVC desalination system," Energy, Elsevier, vol. 158(C), pages 305-316.
    3. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Shi, Can & Lv, Chen, 2019. "A combined pressure regulation technology with multi-optimization of the entrainment passage for performance improvement of the steam ejector in MED-TVC desalination system," Energy, Elsevier, vol. 175(C), pages 46-57.
    4. Weitzer, Maximilian & Müller, Dominik & Karl, Jürgen, 2022. "Two-phase expansion processes in heat pump – ORC systems (Carnot batteries) with volumetric machines for enhanced off-design efficiency," Renewable Energy, Elsevier, vol. 199(C), pages 720-732.
    5. Cao, Yan & Dhahad, Hayder A. & Alsharif, Sameer & Sharma, Kamal & El.Shafy, Asem Saleh & Farhang, Babak & Mohammed, Adil Hussein, 2022. "Multi-objective optimizations and exergoeconomic analyses of a high-efficient bi-evaporator multigeneration system with freshwater unit," Renewable Energy, Elsevier, vol. 191(C), pages 699-714.
    6. Yang, Chengdian & Yi, Fulong & Zhang, Jianyuan & Du, Genwang & Yin, Wei & Ma, Yuhua & Wang, Wei & You, Jinggang & Yu, Songtao, 2023. "Towards high-performance of organic flash cycle through cycle configuration improvement: State-of-art research," Energy, Elsevier, vol. 278(PA).
    7. Mondal, Subha & Alam, Shahbaz & De, Sudipta, 2018. "Performance assessment of a low grade waste heat driven organic flash cycle (OFC) with ejector," Energy, Elsevier, vol. 163(C), pages 849-862.
    8. Yu, Zeting & Feng, Chunyu & Lai, Yanhua & Xu, Guoping & Wang, Daohan, 2022. "Performance assessment and optimization of two novel cogeneration systems integrating proton exchange membrane fuel cell with organic flash cycle for low temperature geothermal heat recovery," Energy, Elsevier, vol. 243(C).
    9. Haojie Chen & Man-Hoe Kim, 2022. "Thermodynamic Analysis and Working Fluid Selection of a Novel Cogeneration System Based on a Regenerative Organic Flash Cycle," Energies, MDPI, vol. 15(21), pages 1-25, October.
    10. Rashidi, Jouan & Yoo, ChangKyoo, 2018. "Exergy, exergo-economic, and exergy-pinch analyses (EXPA) of the kalina power-cooling cycle with an ejector," Energy, Elsevier, vol. 155(C), pages 504-520.
    11. Wang, Mingtao & Qu, Lin & Liu, Huanwei & Chen, Pengji & Wang, Xuan, 2024. "Performance improvement analysis of the regenerative dual-pressure organic flash cycle assisted by ejectors," Energy, Elsevier, vol. 297(C).
    12. Hai, Tao & Zoghi, Mohammad & Abed, Hooman & Chauhan, Bhupendra Singh & Ahmed, Ahmed Najat, 2023. "Exergy-economic study and multi-objective optimization of a geothermal-based combined organic flash cycle and PEMFC for poly-generation purpose," Energy, Elsevier, vol. 268(C).
    13. Tang, Junrong & Li, Qibin & Wang, Shukun & Yu, Haoshui, 2023. "Thermo-economic optimization and comparative analysis of different organic flash cycles for the supercritical CO2 recompression Brayton cycle waste heat recovery," Energy, Elsevier, vol. 278(PB).
    14. Chen, Heng & Alzahrani, Huda A. & Amin, Mohammed A. & Sun, Minghui, 2023. "Towards sustainable development through the design, multi-aspect analyses, and multi-objective optimization of a novel solar-based multi-generation system," Energy, Elsevier, vol. 267(C).
    15. Lu, Wei & Chen, Hongjie, 2018. "Design of cylindrical mixing chamber ejector according to performance analyses," Energy, Elsevier, vol. 164(C), pages 594-601.
    16. Mohammadi, Zahra & Ahmadi, Pouria & Ashjaee, Mehdi, 2023. "Proposal and multi-criteria optimization of a novel biomass-based and PEMfuel cell system for generating clean power for building applications," Energy, Elsevier, vol. 277(C).
    17. Parikhani, Towhid & Ghaebi, Hadi & Rostamzadeh, Hadi, 2018. "A novel geothermal combined cooling and power cycle based on the absorption power cycle: Energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 153(C), pages 265-277.
    18. Hajialigol, Najmeh & Fattahi, Abolfazl & Karimi, Nader & Jamali, Mostafa & Keighobadi, Shervin, 2024. "Hybridized power-hydrogen generation using various configurations of Brayton-organic flash Rankine cycles fed by a sustainable fuel: Exergy and exergoeconomic analyses with ANN prediction," Energy, Elsevier, vol. 290(C).
    19. Kyoung Hoon Kim, 2019. "Thermodynamic Performance and Optimization Analysis of a Modified Organic Flash Cycle for the Recovery of Low-Grade Heat," Energies, MDPI, vol. 12(3), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mondal, Subha & De, Sudipta, 2017. "Power by waste heat recovery from low temperature industrial flue gas by Organic Flash Cycle (OFC) and transcritical-CO2 power cycle: A comparative study through combined thermodynamic and economic an," Energy, Elsevier, vol. 121(C), pages 832-840.
    2. Mondal, Subha & Alam, Shahbaz & De, Sudipta, 2018. "Performance assessment of a low grade waste heat driven organic flash cycle (OFC) with ejector," Energy, Elsevier, vol. 163(C), pages 849-862.
    3. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
    4. Mondal, Subha & De, Sudipta, 2015. "CO2 based power cycle with multi-stage compression and intercooling for low temperature waste heat recovery," Energy, Elsevier, vol. 90(P1), pages 1132-1143.
    5. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    6. Yang, Min-Hsiung & Yeh, Rong-Hua, 2016. "Economic performances optimization of an organic Rankine cycle system with lower global warming potential working fluids in geothermal application," Renewable Energy, Elsevier, vol. 85(C), pages 1201-1213.
    7. Pezzuolo, Alex & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design," Energy, Elsevier, vol. 102(C), pages 605-620.
    8. Mondal, Subha & De, Sudipta, 2015. "Transcritical CO2 power cycle – Effects of regenerative heating using turbine bleed gas at intermediate pressure," Energy, Elsevier, vol. 87(C), pages 95-103.
    9. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    10. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    11. Lee, Ung & Jeon, Jeongwoo & Han, Chonghun & Lim, Youngsub, 2017. "Superstructure based techno-economic optimization of the organic rankine cycle using LNG cryogenic energy," Energy, Elsevier, vol. 137(C), pages 83-94.
    12. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    13. Long, R. & Bao, Y.J. & Huang, X.M. & Liu, W., 2014. "Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery," Energy, Elsevier, vol. 73(C), pages 475-483.
    14. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    15. Amiri Rad, Ehsan & Mohammadi, Saeed & Tayyeban, Edris, 2020. "Simultaneous optimization of working fluid and boiler pressure in an organic Rankine cycle for different heat source temperatures," Energy, Elsevier, vol. 194(C).
    16. Wang, Dongxiang & Ling, Xiang & Peng, Hao & Liu, Lin & Tao, LanLan, 2013. "Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation," Energy, Elsevier, vol. 50(C), pages 343-352.
    17. Yılmaz, Alper, 2015. "Transcritical organic Rankine vapor compression refrigeration system for intercity bus air-conditioning using engine exhaust heat," Energy, Elsevier, vol. 82(C), pages 1047-1056.
    18. Yu, Haoshui & Feng, Xiao & Wang, Yufei, 2015. "A new pinch based method for simultaneous selection of working fluid and operating conditions in an ORC (Organic Rankine Cycle) recovering waste heat," Energy, Elsevier, vol. 90(P1), pages 36-46.
    19. Kyoung Hoon Kim, 2019. "Thermodynamic Performance and Optimization Analysis of a Modified Organic Flash Cycle for the Recovery of Low-Grade Heat," Energies, MDPI, vol. 12(3), pages 1-21, January.
    20. Du, Yang & Dai, Yiping, 2018. "Off-design performance analysis of a power-cooling cogeneration system combining a Kalina cycle with an ejector refrigeration cycle," Energy, Elsevier, vol. 161(C), pages 233-250.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:134:y:2017:i:c:p:638-648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.