IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v275y2023ics0360544223007272.html
   My bibliography  Save this article

Controlled combination of phosphorescent and fluorescent materials to exploit energy-saving potential in the built environment

Author

Listed:
  • Chiatti, Chiara
  • Fabiani, Claudia
  • Bondi, Roberto
  • Zampini, Giulia
  • Latterini, Loredana
  • Pisello, Anna Laura

Abstract

As global warming accelerates at an alarming rate, there has been growing interest in passive radiative cooling solutions that can spontaneously cool objects without requiring energy consumption. This study investigates the emission performances of combined phosphorescent (P) and fluorescent (F) pigments for use as radiative cooling materials. Previous research has shown the potential of photoluminescence in reducing urban surface temperatures by reflecting and emitting incident solar radiation. P and F pigments were combined in different ratios to achieve a balance between brightness and persistency. The results indicatethat P pigments have higher luminance values but decay more rapidly, while specific ratios of P and F pigments provide reasonable luminance and longer afterglow. This study identifies the optimal “fluorescence-phosphorescence” combination for possible implementation of FP pigments in more complex materials for the built environment. These findings contribute to the development of effective radiative cooling solutions that can mitigate the impacts of global warming.

Suggested Citation

  • Chiatti, Chiara & Fabiani, Claudia & Bondi, Roberto & Zampini, Giulia & Latterini, Loredana & Pisello, Anna Laura, 2023. "Controlled combination of phosphorescent and fluorescent materials to exploit energy-saving potential in the built environment," Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223007272
    DOI: 10.1016/j.energy.2023.127333
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223007272
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127333?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brown, Alastair & Foley, Aoife & Laverty, David & McLoone, Seán & Keatley, Patrick, 2022. "Heating and cooling networks: A comprehensive review of modelling approaches to map future directions," Energy, Elsevier, vol. 261(PB).
    2. Yunfei Li & Sebastian Schubert & Jürgen P. Kropp & Diego Rybski, 2020. "On the influence of density and morphology on the Urban Heat Island intensity," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Alimohammadian, Mehdi & Dinarvand, Saeed & Mahian, Omid, 2022. "Innovative strategy of passive sub-ambient radiative cooler through incorporation of a thermal rectifier to double-layer nanoparticle-based coating," Energy, Elsevier, vol. 247(C).
    4. Fabiani, C. & Castaldo, V.L. & Pisello, A.L., 2020. "Thermochromic materials for indoor thermal comfort improvement: Finite difference modeling and validation in a real case-study building," Applied Energy, Elsevier, vol. 262(C).
    5. Chiatti, Chiara & Kousis, Ioannis & Fabiani, Claudia & Pisello, Anna Laura, 2022. "Effect of optimized photoluminescence on luminous and passive cooling potential: A new combined experimental and numerical approach applied to yellow-emitting glass tiles," Renewable Energy, Elsevier, vol. 196(C), pages 28-39.
    6. Djuretic, Andrej & Kostic, Miomir, 2018. "Actual energy savings when replacing high-pressure sodium with LED luminaires in street lighting," Energy, Elsevier, vol. 157(C), pages 367-378.
    7. Santamouris, M. & Yun, Geun Young, 2020. "Recent development and research priorities on cool and super cool materials to mitigate urban heat island," Renewable Energy, Elsevier, vol. 161(C), pages 792-807.
    8. Lian, Hongzhou & Hou, Zhiyao & Shang, Mengmeng & Geng, Dongling & Zhang, Yang & Lin, Jun, 2013. "Rare earth ions doped phosphors for improving efficiencies of solar cells," Energy, Elsevier, vol. 57(C), pages 270-283.
    9. Fabiani, Claudia & Gambucci, Marta & Chiatti, Chiara & Zampini, Giulia & Latterini, Loredana & Pisello, Anna Laura, 2022. "Towards field implementation of photoluminescence in the built environment for passive cooling and lighting energy efficiency," Applied Energy, Elsevier, vol. 324(C).
    10. Jain, Abhilasha & Kumar, Ashwini & Dhoble, S.J. & Peshwe, D.R., 2016. "Persistent luminescence: An insight," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 135-153.
    11. Lv, Song & Ji, Yishuang & Ji, Yitong & Qian, Zuoqin & Ren, Juwen & Zhang, Bolong & Lai, Yin & Yang, Jiahao & Chang, Zhihao, 2022. "Experimental and numerical comparative investigation on 24h radiative cooling performance of a simple organic composite film," Energy, Elsevier, vol. 261(PA).
    12. Fabiani, Claudia & Chiatti, Chiara & Pisello, Anna Laura, 2021. "Development of photoluminescent composites for energy efficiency in smart outdoor lighting applications: An experimental and numerical investigation," Renewable Energy, Elsevier, vol. 172(C), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiatti, Chiara & Fabiani, Claudia & Huang, Xinjie & Bou-Zeid, Elie & Pisello, Anna Laura, 2024. "Exploring the potential of phosphorescence for mitigating urban overheating: First time representation in an Urban Canopy Model," Applied Energy, Elsevier, vol. 362(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiatti, Chiara & Fabiani, Claudia & Pisello, Anna Laura, 2023. "Toward the energy optimization of smart lighting systems through the luminous potential of photoluminescence," Energy, Elsevier, vol. 266(C).
    2. Fabiani, Claudia & Gambucci, Marta & Chiatti, Chiara & Zampini, Giulia & Latterini, Loredana & Pisello, Anna Laura, 2022. "Towards field implementation of photoluminescence in the built environment for passive cooling and lighting energy efficiency," Applied Energy, Elsevier, vol. 324(C).
    3. Zhang, Hongjie & Yao, Runming & Luo, Qing & Wang, Wenbo, 2022. "A mathematical model for a rapid calculation of the urban canyon albedo and its applications," Renewable Energy, Elsevier, vol. 197(C), pages 836-851.
    4. Jiang, Kaiyu & Zhang, Kai & Shi, Zijie & Li, Haoran & Wu, Bingyang & Mahian, Omid & Zhu, Yutong, 2023. "Experimental and numerical study on the potential of a new radiative cooling paint boosted by SiO2 microparticles for energy saving," Energy, Elsevier, vol. 283(C).
    5. Chiatti, Chiara & Kousis, Ioannis & Fabiani, Claudia & Pisello, Anna Laura, 2022. "Effect of optimized photoluminescence on luminous and passive cooling potential: A new combined experimental and numerical approach applied to yellow-emitting glass tiles," Renewable Energy, Elsevier, vol. 196(C), pages 28-39.
    6. Chiatti, Chiara & Fabiani, Claudia & Cotana, Franco & Pisello, Anna Laura, 2021. "Exploring the potential of photoluminescence for urban passive cooling and lighting applications: A new approach towards materials’ optimization," Energy, Elsevier, vol. 231(C).
    7. Beccali, M. & Bonomolo, M. & Leccese, F. & Lista, D. & Salvadori, G., 2018. "On the impact of safety requirements, energy prices and investment costs in street lighting refurbishment design," Energy, Elsevier, vol. 165(PB), pages 739-759.
    8. Chiatti, Chiara & Fabiani, Claudia & Huang, Xinjie & Bou-Zeid, Elie & Pisello, Anna Laura, 2024. "Exploring the potential of phosphorescence for mitigating urban overheating: First time representation in an Urban Canopy Model," Applied Energy, Elsevier, vol. 362(C).
    9. Carlos Velásquez & Francisco Espín & María Ángeles Castro & Francisco Rodríguez, 2024. "Energy Efficiency in Public Lighting Systems Friendly to the Environment and Protected Areas," Sustainability, MDPI, vol. 16(12), pages 1-15, June.
    10. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    11. Alessandro Cannavale & Marco Pugliese & Roberto Stasi & Stefania Liuzzi & Francesco Martellotta & Vincenzo Maiorano & Ubaldo Ayr, 2024. "Effectiveness of Daytime Radiative Sky Cooling in Constructions," Energies, MDPI, vol. 17(13), pages 1-23, June.
    12. George M. Stavrakakis & Dimitris A. Katsaprakakis & Konstantinos Braimakis, 2023. "A Computational Fluid Dynamics Modelling Approach for the Numerical Verification of the Bioclimatic Design of a Public Urban Area in Greece," Sustainability, MDPI, vol. 15(15), pages 1-27, July.
    13. Rakin Abrar & Showmitra Kumar Sarkar & Kashfia Tasnim Nishtha & Swapan Talukdar & Shahfahad & Atiqur Rahman & Abu Reza Md Towfiqul Islam & Amir Mosavi, 2022. "Assessing the Spatial Mapping of Heat Vulnerability under Urban Heat Island (UHI) Effect in the Dhaka Metropolitan Area," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    14. Dusan Gordic & Vladimir Vukasinovic & Zoran Kovacevic & Mladen Josijevic & Dubravka Zivkovic, 2021. "Assessing the Techno-Economic Effects of Replacing Energy-Inefficient Street Lighting with LED Corn Bulbs," Energies, MDPI, vol. 14(13), pages 1-16, June.
    15. Lv, Zhuoran & Guo, Huadong & Zhang, Lu & Liang, Dong & Zhu, Qi & Liu, Xuting & Zhou, Heng & Liu, Yiming & Gou, Yiting & Dou, Xinyu & Chen, Guoqiang, 2024. "Urban public lighting classification method and analysis of energy and environmental effects based on SDGSAT-1 glimmer imager data," Applied Energy, Elsevier, vol. 355(C).
    16. Hua Shi & George Xian & Roger Auch & Kevin Gallo & Qiang Zhou, 2021. "Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology," Land, MDPI, vol. 10(8), pages 1-30, August.
    17. Marchini, F. & Chiatti, C. & Fabiani, C. & Pisello, A.L., 2023. "Development of an innovative translucent–photoluminescent coating for smart windows applications: An experimental and numerical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    18. Xu, Fusuo & Zhang, Jianshun & Gao, Zhi, 2024. "A case study of the effect of building surface cool and super cool materials on residential neighbourhood energy consumption in Nanjing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    19. Haoran Ju & Yongxue Wang & Yiwu Feng & Lijun Zheng, 2024. "Numerical Study on Peak Shaving Performance of Combined Heat and Power Unit Assisted by Heating Storage in Long-Distance Pipelines Scheduled by Particle Swarm Optimization Method," Energies, MDPI, vol. 17(2), pages 1-18, January.
    20. Jakubek, Dariusz & Ocłoń, Paweł & Nowak-Ocłoń, Marzena & Sułowicz, Maciej & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2023. "Mathematical modelling and model validation of the heat losses in district heating networks," Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223007272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.