IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i12p5113-d1415750.html
   My bibliography  Save this article

Energy Efficiency in Public Lighting Systems Friendly to the Environment and Protected Areas

Author

Listed:
  • Carlos Velásquez

    (Department of Applied Mathematics, University of Alicante, 03690 Alicante, Spain
    Instituto de Investigación Geológico y Energético, Quito 170518, Ecuador)

  • Francisco Espín

    (Instituto de Investigación Geológico y Energético, Quito 170518, Ecuador
    Departamento de Luminotecnia, Luz y Visión, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán T4000, Argentina)

  • María Ángeles Castro

    (Department of Applied Mathematics, University of Alicante, 03690 Alicante, Spain)

  • Francisco Rodríguez

    (Department of Applied Mathematics, University of Alicante, 03690 Alicante, Spain)

Abstract

Solid-state lighting technology, such as LED devices, is critical to improving energy efficiency in street lighting systems. In Ecuador, government policies have established the obligation to exclusively use LED systems starting in 2023, except in special projects. Ecuador, known for its vast biodiversity, protects its national parks, which are rich in flora, fauna and natural resources, through international institutions and agreements such as UNESCO, CBD and CITES. Although reducing electrical consumption usually measures energy efficiency, this article goes further. It considers aspects such as the correlated color temperature in the lighting design of protected areas, light pollution and the decrease in energy quality due to harmonic distortion. Measurements of the electromagnetic spectrum of the light sources were made in an area in the Galápagos National Park of Ecuador, revealing highly correlated color temperatures that can affect ecosystem cycles. In addition, the investigation detected levels of light pollution increasing the night sky brightness and a notable presence of harmonic distortion in the electrical grid. Using simulations to predict the behavior of these variables offers an efficient option to help preserve protected environments and the quality of energy supply while promoting energy savings.

Suggested Citation

  • Carlos Velásquez & Francisco Espín & María Ángeles Castro & Francisco Rodríguez, 2024. "Energy Efficiency in Public Lighting Systems Friendly to the Environment and Protected Areas," Sustainability, MDPI, vol. 16(12), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:5113-:d:1415750
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/12/5113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/12/5113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Djuretic, Andrej & Kostic, Miomir, 2018. "Actual energy savings when replacing high-pressure sodium with LED luminaires in street lighting," Energy, Elsevier, vol. 157(C), pages 367-378.
    2. Xiaoyun Fu & Di Feng & Xu Jiang & Tingting Wu, 2023. "The Effect of Correlated Color Temperature and Illumination Level of LED Lighting on Visual Comfort during Sustained Attention Activities," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    3. Ghada Abdulrahman Najjar & Khaled Akkad & Ahdab Hashim Almahdaly, 2023. "Classification of Lighting Design Aspects in Relation to Employees’ Productivity in Saudi Arabia," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beccali, M. & Bonomolo, M. & Leccese, F. & Lista, D. & Salvadori, G., 2018. "On the impact of safety requirements, energy prices and investment costs in street lighting refurbishment design," Energy, Elsevier, vol. 165(PB), pages 739-759.
    2. Gaffuri, Pierre & Stolyarova, Elena & Llerena, Daniel & Appert, Estelle & Consonni, Marianne & Robin, Stéphane & Consonni, Vincent, 2021. "Potential substitutes for critical materials in white LEDs: Technological challenges and market opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Chiatti, Chiara & Fabiani, Claudia & Pisello, Anna Laura, 2023. "Toward the energy optimization of smart lighting systems through the luminous potential of photoluminescence," Energy, Elsevier, vol. 266(C).
    4. Enrique Navarrete-de Galvez & Alfonso Gago-Calderon & Luz Garcia-Ceballos & Miguel Angel Contreras-Lopez & Jose Ramon Andres-Diaz, 2021. "Adjustment of Lighting Parameters from Photopic to Mesopic Values in Outdoor Lighting Installations Strategy and Associated Evaluation of Variation in Energy Needs," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    5. Dusan Gordic & Vladimir Vukasinovic & Zoran Kovacevic & Mladen Josijevic & Dubravka Zivkovic, 2021. "Assessing the Techno-Economic Effects of Replacing Energy-Inefficient Street Lighting with LED Corn Bulbs," Energies, MDPI, vol. 14(13), pages 1-16, June.
    6. Lv, Zhuoran & Guo, Huadong & Zhang, Lu & Liang, Dong & Zhu, Qi & Liu, Xuting & Zhou, Heng & Liu, Yiming & Gou, Yiting & Dou, Xinyu & Chen, Guoqiang, 2024. "Urban public lighting classification method and analysis of energy and environmental effects based on SDGSAT-1 glimmer imager data," Applied Energy, Elsevier, vol. 355(C).
    7. Sadeghian, Omid & Mohammadi-Ivatloo, Behnam & Oshnoei, Arman & Aghaei, Jamshid, 2024. "Unveiling the potential of renewable energy and battery utilization in real-world public lighting systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Munjed A. Maraqa & Francisco D. B. Albuquerque & Mohammed H. Alzard & Rezaul Chowdhury & Lina A. Kamareddine & Jamal El Zarif, 2021. "GHG Emission Reduction Opportunities for Road Projects in the Emirate of Abu Dhabi: A Scenario Approach," Sustainability, MDPI, vol. 13(13), pages 1-22, July.
    9. Annika K. Jägerbrand, 2020. "Synergies and Trade-Offs Between Sustainable Development and Energy Performance of Exterior Lighting," Energies, MDPI, vol. 13(9), pages 1-27, May.
    10. Chiatti, Chiara & Fabiani, Claudia & Bondi, Roberto & Zampini, Giulia & Latterini, Loredana & Pisello, Anna Laura, 2023. "Controlled combination of phosphorescent and fluorescent materials to exploit energy-saving potential in the built environment," Energy, Elsevier, vol. 275(C).
    11. Roman Sikora & Przemysław Markiewicz, 2020. "Assessment of Colorimetric Parameters for HPS Lamp with Electromagnetic Control Gear and Electronic Ballast," Energies, MDPI, vol. 13(11), pages 1-21, June.
    12. Davidovic, M. & Kostic, M., 2022. "Comparison of energy efficiency and costs related to conventional and LED road lighting installations," Energy, Elsevier, vol. 254(PB).
    13. Horaţiu Albu & Dorin Beu & Calin Ciugudeanu, 2022. "Study on the Power Quality of LED Street Luminaires," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
    14. Lambros T. Doulos & Ioannis Sioutis & Aris Tsangrassoulis & Laurent Canale & Kostantinos Faidas, 2020. "Revision of Threshold Luminance Levels in Tunnels Aiming to Minimize Energy Consumption at No Cost: Methodology and Case Studies," Energies, MDPI, vol. 13(7), pages 1-23, April.
    15. Tallal Ahmed & Waqas Khalid & Adeela Aslam, 2022. "Energy conservation potential in highway illumination system: A Techno-Enviro-Economic study on retrofitting HPS with LED luminaires," Energy & Environment, , vol. 33(3), pages 599-613, May.
    16. Salvia, Amanda Lange & Brandli, Luciana Londero & Leal Filho, Walter & Locatelli Kalil, Rosa Maria, 2019. "An analysis of the applications of Analytic Hierarchy Process (AHP) for selection of energy efficiency practices in public lighting in a sample of Brazilian cities," Energy Policy, Elsevier, vol. 132(C), pages 854-864.
    17. Lodovica Valetti & Francesca Floris & Anna Pellegrino, 2021. "Renovation of Public Lighting Systems in Cultural Landscapes: Lighting and Energy Performance and Their Impact on Nightscapes," Energies, MDPI, vol. 14(2), pages 1-25, January.
    18. Alexandru Viorel Rusu & Catalin Daniel Galatanu & Gheorghe Livint & Dorin Dumitru Lucache, 2021. "Average Luminance Calculation in Street Lighting Design, Comparison between BS-EN 13201 and RP-08 Standards," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
    19. Nina Sakinah Ahmad Rofaie & Seuk Wai Phoong & Muzalwana Abdul Talib @ Abdul Mutalib, 2022. "Light-Emitting Diode (LED) versus High-Pressure Sodium Vapour (HPSV) Efficiency: A Data Envelopment Analysis Approach with Undesirable Output," Energies, MDPI, vol. 15(13), pages 1-21, June.
    20. Huipin Lin & Jin Hu & Xiao Zhou & Zhengyu Lu & Lujun Wang, 2018. "New DC Grid Power Line Communication Technology Used in Networked LED Driver," Energies, MDPI, vol. 11(12), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:5113-:d:1415750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.