IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3210-d1425742.html
   My bibliography  Save this article

Effectiveness of Daytime Radiative Sky Cooling in Constructions

Author

Listed:
  • Alessandro Cannavale

    (Dipartimento di Architettura, Costruzione e Design, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
    National Research Council, Institute of Nanotechnology (CNR-NANOTEC), Via Monteroni, 73100 Lecce, Italy)

  • Marco Pugliese

    (National Research Council, Institute of Nanotechnology (CNR-NANOTEC), Via Monteroni, 73100 Lecce, Italy)

  • Roberto Stasi

    (Dipartimento di Architettura, Costruzione e Design, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy)

  • Stefania Liuzzi

    (Dipartimento di Architettura, Costruzione e Design, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy)

  • Francesco Martellotta

    (Dipartimento di Architettura, Costruzione e Design, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy)

  • Vincenzo Maiorano

    (National Research Council, Institute of Nanotechnology (CNR-NANOTEC), Via Monteroni, 73100 Lecce, Italy)

  • Ubaldo Ayr

    (Dipartimento di Architettura, Costruzione e Design, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy)

Abstract

In this paper, we have carefully studied the scientific literature dealing with the use of passive radiative surfaces within the construction industry. The aim of this paper is to highlight technologies and materials for daylight radiative cooling under study today—or already on the market—and to report their main characteristics, performance and, where possible, costs. Following a review of the available scientific literature, the advantages and limitations of such an option were highlighted, seeking to capture opportunities and future lines of research development. This review also provides the physical laws that evaluate the energy balance of passive radiative surfaces as well as the criteria to quantify all the terms of these equations.

Suggested Citation

  • Alessandro Cannavale & Marco Pugliese & Roberto Stasi & Stefania Liuzzi & Francesco Martellotta & Vincenzo Maiorano & Ubaldo Ayr, 2024. "Effectiveness of Daytime Radiative Sky Cooling in Constructions," Energies, MDPI, vol. 17(13), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3210-:d:1425742
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. XiaoZhi Lim, 2020. "The super-cool materials that send heat to space," Nature, Nature, vol. 577(7788), pages 18-20, January.
    2. Raeissi, S. & Taheri, M., 2000. "Skytherm: an approach to year-round thermal energy sufficient houses," Renewable Energy, Elsevier, vol. 19(4), pages 527-543.
    3. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    4. Fang, Hong & Zhao, Dongliang & Yuan, Jinchao & Aili, Ablimit & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2019. "Performance evaluation of a metamaterial-based new cool roof using improved Roof Thermal Transfer Value model," Applied Energy, Elsevier, vol. 248(C), pages 589-599.
    5. Santamouris, M. & Yun, Geun Young, 2020. "Recent development and research priorities on cool and super cool materials to mitigate urban heat island," Renewable Energy, Elsevier, vol. 161(C), pages 792-807.
    6. Pirvaram, Atousa & Talebzadeh, Nima & Leung, Siu Ning & O'Brien, Paul G., 2022. "Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Zhang, Kai & Zhao, Dongliang & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2018. "Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA," Applied Energy, Elsevier, vol. 224(C), pages 371-381.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin & Wang, Fu-Qiang, 2023. "Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation," Applied Energy, Elsevier, vol. 331(C).
    2. Jiang, Kaiyu & Zhang, Kai & Shi, Zijie & Li, Haoran & Wu, Bingyang & Mahian, Omid & Zhu, Yutong, 2023. "Experimental and numerical study on the potential of a new radiative cooling paint boosted by SiO2 microparticles for energy saving," Energy, Elsevier, vol. 283(C).
    3. Su, Xiaosong & Zhang, Ling & Liu, Zhongbing & Luo, Yongqiang & Chen, Dapeng & Li, Weijiao, 2021. "Performance evaluation of a novel building envelope integrated with thermoelectric cooler and radiative sky cooler," Renewable Energy, Elsevier, vol. 171(C), pages 1061-1078.
    4. Yuan, Jinchao & Yin, Hongle & Yuan, Dan & Yang, Yongjian & Xu, Shaoyu, 2022. "On daytime radiative cooling using spectrally selective metamaterial based building envelopes," Energy, Elsevier, vol. 242(C).
    5. Chi, Fang'ai & Liu, Yang & Yan, Jianxiong, 2021. "Integration of Radiative-based air temperature regulating system into residential building for energy saving," Applied Energy, Elsevier, vol. 301(C).
    6. Linlin Guo & Zhuqing Liang & Wenhao Li & Can Yang & Endong Wang, 2024. "The Review of Radiative Cooling Technology Applied to Building Roof—A Bibliometric Analysis," Sustainability, MDPI, vol. 16(16), pages 1-20, August.
    7. Pirvaram, Atousa & Talebzadeh, Nima & Leung, Siu Ning & O'Brien, Paul G., 2022. "Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Hu, Mingke & Zhao, Bin & Ao, Xianze & Feng, Junsheng & Cao, Jingyu & Su, Yuehong & Pei, Gang, 2019. "Experimental study on a hybrid photo-thermal and radiative cooling collector using black acrylic paint as the panel coating," Renewable Energy, Elsevier, vol. 139(C), pages 1217-1226.
    9. Liu, Junwei & Zhang, Ji & Zhang, Debao & Jiao, Shifei & Xing, Jincheng & Tang, Huajie & Zhang, Ying & Li, Shuai & Zhou, Zhihua & Zuo, Jian, 2020. "Sub-ambient radiative cooling with wind cover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    10. Hu, Mingke & Zhao, Bin & Ao, Xianze & Zhao, Pinghui & Su, Yuehong & Pei, Gang, 2018. "Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system," Applied Energy, Elsevier, vol. 231(C), pages 288-300.
    11. Shan, He & Poredoš, Primož & Zou, Hao & Lv, Haotian & Wang, Ruzhu, 2023. "Perspectives for urban microenvironment sustainability enabled by decentralized water-energy-food harvesting," Energy, Elsevier, vol. 282(C).
    12. Li, Haoran & Zhang, Kai & Shi, Zijie & Jiang, Kaiyu & Wu, Bingyang & Ye, Peiliang, 2023. "Cooling benefit of implementing radiative cooling on a city-scale," Renewable Energy, Elsevier, vol. 212(C), pages 372-381.
    13. Ji, Yishuang & Lv, Song, 2023. "Experimental and numerical investigation on a radiative cooling driving thermoelectric generator system," Energy, Elsevier, vol. 268(C).
    14. Yan, Tian & Xu, Dawei & Meng, Jing & Xu, Xinhua & Yu, Zhongyi & Wu, Huijun, 2024. "A review of radiative sky cooling technology and its application in building systems," Renewable Energy, Elsevier, vol. 220(C).
    15. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin, 2023. "Design and experimental validation of an all-day passive thermoelectric system via radiative cooling and greenhouse effects," Energy, Elsevier, vol. 263(PA).
    16. Vall, Sergi & Johannes, Kévyn & David, Damien & Castell, Albert, 2020. "A new flat-plate radiative cooling and solar collector numerical model: Evaluation and metamodeling," Energy, Elsevier, vol. 202(C).
    17. Wang, Xuanjie & Narayan, Shankar, 2022. "Thermal radiative switching interface for energy-efficient temperature control," Renewable Energy, Elsevier, vol. 197(C), pages 574-582.
    18. Fang, Hong & Zhao, Dongliang & Yuan, Jinchao & Aili, Ablimit & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2019. "Performance evaluation of a metamaterial-based new cool roof using improved Roof Thermal Transfer Value model," Applied Energy, Elsevier, vol. 248(C), pages 589-599.
    19. Bu, Fan & Yan, Da & Tan, Gang & Sun, Hongsan & An, Jingjing, 2022. "Systematically incorporating spectrum-selective radiative cooling into building performance simulation: Numerical integration method and experimental validation," Applied Energy, Elsevier, vol. 312(C).
    20. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Su, Yuehong & Pei, Gang, 2019. "A novel strategy for a building-integrated diurnal photovoltaic and all-day radiative cooling system," Energy, Elsevier, vol. 183(C), pages 892-900.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3210-:d:1425742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.