IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p11642-d1204548.html
   My bibliography  Save this article

A Computational Fluid Dynamics Modelling Approach for the Numerical Verification of the Bioclimatic Design of a Public Urban Area in Greece

Author

Listed:
  • George M. Stavrakakis

    (Power Plant Synthesis Laboratory, Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
    Energy and Environmental Research Office, 20 Agamemnonos Str., 71409 Heraklion, Greece)

  • Dimitris A. Katsaprakakis

    (Power Plant Synthesis Laboratory, Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece)

  • Konstantinos Braimakis

    (Laboratory of Refrigeration, Air Conditioning & Solar Energy, Thermal Engineering Section, School of Mechanical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Str., 15780 Zografou, Greece)

Abstract

Recent recordings of urban overheating reveal a dramatic increase in cities’ population exposure to heatwaves. Heatwaves’ implications are escalated in urban environments due to the intensification of the Urban Heat Island (UHI) effect. To combat the overheating and UHI adverse effects, novel urban rehabilitation actions are needed based on reliable predictions of appropriate Key Performance Indicators (KPIs) (such as pedestrian-level air temperature and thermal comfort) for alternative design scenarios. The objective of the current study is to present the application of a previously developed Computational Fluid Dynamics (CFD) model for the calculation of urban microclimatic conditions for the assessment of the UHI and thermal-comfort conditions in a central urban area in the city of Heraklion in Crete, Greece. Empirical validation of the model is performed through comparisons with monitored microclimate data (i.e., air temperature, relative humidity, wind speed) and actual sensation vote recordings found in another research study. In compliance with the latter, the validation campaign is conducted for a typical hot summer day in July 2009 from 10:00 to 16:00. The model is then used to assess the UHI effects for both the existing urban configuration and a given suggested environmental upgrade of the space. Simulations of the existing situation reveal that the squares located in the studied area already stand for efficient resistances to urban overheating, and heat vulnerabilities are detected mainly in non-shaded traffic and pedestrian roads perimetric to the squares. Based on the CFD simulations, the suggested environmental upgrading plan exhibits a reduction in the peak mean air temperature of 0.46 °C, and thermal comfort is improved by at least 5% (based on SET) throughout the studied area in summer. At the same time, simulations of winter conditions suggest that there are limited potential pedestrian thermal-sensation and building heating penalties under the considered renovation scenario.

Suggested Citation

  • George M. Stavrakakis & Dimitris A. Katsaprakakis & Konstantinos Braimakis, 2023. "A Computational Fluid Dynamics Modelling Approach for the Numerical Verification of the Bioclimatic Design of a Public Urban Area in Greece," Sustainability, MDPI, vol. 15(15), pages 1-27, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11642-:d:1204548
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/11642/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/11642/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gabriele Manoli & Simone Fatichi & Markus Schläpfer & Kailiang Yu & Thomas W. Crowther & Naika Meili & Paolo Burlando & Gabriel G. Katul & Elie Bou-Zeid, 2019. "Magnitude of urban heat islands largely explained by climate and population," Nature, Nature, vol. 573(7772), pages 55-60, September.
    2. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    3. Martina Giorio & Rossana Paparella, 2023. "Climate Mitigation Strategies: The Use of Cool Pavements," Sustainability, MDPI, vol. 15(9), pages 1-26, May.
    4. Santamouris, M. & Yun, Geun Young, 2020. "Recent development and research priorities on cool and super cool materials to mitigate urban heat island," Renewable Energy, Elsevier, vol. 161(C), pages 792-807.
    5. Dimitris Al. Katsaprakakis & Georgios Zidianakis & Yiannis Yiannakoudakis & Evaggelos Manioudakis & Irini Dakanali & Spyros Kanouras, 2020. "Working on Buildings’ Energy Performance Upgrade in Mediterranean Climate," Energies, MDPI, vol. 13(9), pages 1-28, May.
    6. Berger, Tania & Chundeli, Faiz Ahmed & Pandey, Rama Umesh & Jain, Minakshi & Tarafdar, Ayon Kumar & Ramamurthy, Adinarayanane, 2022. "Low-income residents' strategies to cope with urban heat," Land Use Policy, Elsevier, vol. 119(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiatti, Chiara & Kousis, Ioannis & Fabiani, Claudia & Pisello, Anna Laura, 2022. "Effect of optimized photoluminescence on luminous and passive cooling potential: A new combined experimental and numerical approach applied to yellow-emitting glass tiles," Renewable Energy, Elsevier, vol. 196(C), pages 28-39.
    2. Xinyi Wang & Yuan Chen & Zhichao Wang & Bo Xu & Zhongke Feng, 2024. "Multi-Temporal Analysis of the Impact of Summer Forest Dynamics on Urban Heat Island Effect in Yan’an City," Sustainability, MDPI, vol. 16(8), pages 1-22, April.
    3. Dimitris A. Katsaprakakis & Nikos Papadakis & Efi Giannopoulou & Yiannis Yiannakoudakis & George Zidianakis & Michalis Kalogerakis & George Katzagiannakis & Eirini Dakanali & George M. Stavrakakis & A, 2023. "Rational Use of Energy in Sports Centres to Achieve Net Zero: The SAVE Project (Part A)," Energies, MDPI, vol. 16(10), pages 1-41, May.
    4. Nikolaos Papadakis & Dimitrios Al. Katsaprakakis, 2023. "A Review of Energy Efficiency Interventions in Public Buildings," Energies, MDPI, vol. 16(17), pages 1-34, August.
    5. Wan Ting Katty Huang & Pierre Masselot & Elie Bou-Zeid & Simone Fatichi & Athanasios Paschalis & Ting Sun & Antonio Gasparrini & Gabriele Manoli, 2023. "Economic valuation of temperature-related mortality attributed to urban heat islands in European cities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Marcin K. Widomski & Anna Musz-Pomorska & Justyna Gołębiowska, 2023. "Hydrologic Effectiveness and Economic Efficiency of Green Architecture in Selected Urbanized Catchment," Land, MDPI, vol. 12(7), pages 1-19, June.
    7. He, J.Y. & Chan, P.W. & Li, Q.S. & Huang, Tao & Yim, Steve Hung Lam, 2024. "Assessment of urban wind energy resource in Hong Kong based on multi-instrument observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    8. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    9. Eric J. Chaisson, 2022. "Energy Budgets of Evolving Nations and Their Growing Cities," Energies, MDPI, vol. 15(21), pages 1-50, November.
    10. Yuxiang Li & Jens-Christian Svenning & Weiqi Zhou & Kai Zhu & Jesse F. Abrams & Timothy M. Lenton & William J. Ripple & Zhaowu Yu & Shuqing N. Teng & Robert R. Dunn & Chi Xu, 2024. "Green spaces provide substantial but unequal urban cooling globally," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Minkyung Park & Heechul Kim, 2023. "Interaction of Urban Configuration, Temperature, and De Facto Population in Seoul, Republic of Korea: Insights from Two-Stage Least-Squares Regression Using S-DoT Data," Land, MDPI, vol. 12(12), pages 1-22, November.
    12. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    13. Alessandro Cannavale & Marco Pugliese & Roberto Stasi & Stefania Liuzzi & Francesco Martellotta & Vincenzo Maiorano & Ubaldo Ayr, 2024. "Effectiveness of Daytime Radiative Sky Cooling in Constructions," Energies, MDPI, vol. 17(13), pages 1-23, June.
    14. Antonio Ligsay & Olivier Telle & Richard Paul, 2021. "Challenges to Mitigating the Urban Health Burden of Mosquito-Borne Diseases in the Face of Climate Change," IJERPH, MDPI, vol. 18(9), pages 1-12, May.
    15. Cristina Piselli & Alessio Guastaveglia & Jessica Romanelli & Franco Cotana & Anna Laura Pisello, 2020. "Facility Energy Management Application of HBIM for Historical Low-Carbon Communities: Design, Modelling and Operation Control of Geothermal Energy Retrofit in a Real Italian Case Study," Energies, MDPI, vol. 13(23), pages 1-18, December.
    16. Alberto Barbaresi & Mattia Ceccarelli & Giulia Menichetti & Daniele Torreggiani & Patrizia Tassinari & Marco Bovo, 2022. "Application of Machine Learning Models for Fast and Accurate Predictions of Building Energy Need," Energies, MDPI, vol. 15(4), pages 1-16, February.
    17. Aerzuna Abulimiti & Yongqiang Liu & Lianmei Yang & Abuduwaili Abulikemu & Yusuyunjiang Mamitimin & Shuai Yuan & Reifat Enwer & Zhiyi Li & Abidan Abuduaini & Zulipina Kadier, 2024. "Urbanization Effect on Changes in Extreme Climate Events in Urumqi, China, from 1976 to 2018," Land, MDPI, vol. 13(3), pages 1-25, February.
    18. Qiu, Lihua & He, Li & Kang, Yu & Liang, Dongzhe, 2022. "Assessment of the potential of enhanced geothermal systems in Asia under the impact of global warming," Renewable Energy, Elsevier, vol. 194(C), pages 636-646.
    19. Sabrina Katharina Beckmann & Michael Hiete & Michael Schneider & Christoph Beck, 2021. "Heat adaptation measures in private households: an application and adaptation of the protective action decision model," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-12, December.
    20. Komi Bernard Bedra & Bohong Zheng & Jiayu Li & Xi Luo, 2023. "A Parametric-Simulation Method to Study the Interconnections between Urban-Street-Morphology Indicators and Their Effects on Pedestrian Thermal Comfort in Tropical Summer," Sustainability, MDPI, vol. 15(11), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11642-:d:1204548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.