IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v231y2021ics036054422101063x.html
   My bibliography  Save this article

Exploring the potential of photoluminescence for urban passive cooling and lighting applications: A new approach towards materials’ optimization

Author

Listed:
  • Chiatti, Chiara
  • Fabiani, Claudia
  • Cotana, Franco
  • Pisello, Anna Laura

Abstract

Different passive strategies are investigated with the aim of reducing the overwhelming problem of energy consumption and greenhouse gases emissions in the built environment. A careful selection of the urban skin can mitigate the Urban Heat Island (UHI) phenomenon and, consequently, improve comfort conditions in indoors and outdoors, and reduce the ever-increasing energy consumption. In this context, the present study aims at investigating innovative cool materials with photoluminescent properties that may be exploited to increase energy saving thanks to the provided cost-free lighting contribution. A new methodology for the analysis of their thermo-optical and photometric behavior is proposed, combining existing techniques dedicated to both photoluminescence and traditional building materials. The luminous samples' performance is experimentally evaluated during both their charging and discharging phase. Furthermore, analyses of covariance are carried out in order to quantitatively assess the impact of samples’ composition on their luminous and optical performances. Results demonstrate how the latter are mainly influenced by the time of excitation and the mixture of chemical compounds, and testify their promising potential as cool materials for UHI mitigation and energy saving strategy. Both these outcomes pave the way for exploiting and scaling up the potential of photoluminescence in highly reflective urban skins, with the ability to emit light as reliable passive lighting sources.

Suggested Citation

  • Chiatti, Chiara & Fabiani, Claudia & Cotana, Franco & Pisello, Anna Laura, 2021. "Exploring the potential of photoluminescence for urban passive cooling and lighting applications: A new approach towards materials’ optimization," Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:energy:v:231:y:2021:i:c:s036054422101063x
    DOI: 10.1016/j.energy.2021.120815
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422101063X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120815?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabiani, C. & Pisello, A.L. & Bou-Zeid, E. & Yang, J. & Cotana, F., 2019. "Adaptive measures for mitigating urban heat islands: The potential of thermochromic materials to control roofing energy balance," Applied Energy, Elsevier, vol. 247(C), pages 155-170.
    2. Panchabikesan, Karthik & Joybari, Mahmood Mastani & Haghighat, Fariborz & Ramalingam, Velraj & Ding, Yulong, 2020. "Feasibility study on the year-round operation of PCM based free cooling systems in tropical climatic conditions," Energy, Elsevier, vol. 192(C).
    3. Ihara, Tomohiko & Kikegawa, Yukihiro & Asahi, Kazutake & Genchi, Yutaka & Kondo, Hiroaki, 2008. "Changes in year-round air temperature and annual energy consumption in office building areas by urban heat-island countermeasures and energy-saving measures," Applied Energy, Elsevier, vol. 85(1), pages 12-25, January.
    4. Ascione, Fabrizio & De Masi, Rosa Francesca & Santamouris, Mattheos & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2018. "Experimental and numerical evaluations on the energy penalty of reflective roofs during the heating season for Mediterranean climate," Energy, Elsevier, vol. 144(C), pages 178-199.
    5. Santamouris, M. & Yun, Geun Young, 2020. "Recent development and research priorities on cool and super cool materials to mitigate urban heat island," Renewable Energy, Elsevier, vol. 161(C), pages 792-807.
    6. Anna, Petrenko, 2016. "Мaркування готової продукції як складова частина інформаційного забезпечення маркетингової діяльності підприємств овочепродуктового підкомплексу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 2(1), March.
    7. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2012. "Impact of climate change on energy use in the built environment in different climate zones – A review," Energy, Elsevier, vol. 42(1), pages 103-112.
    8. Subramanyam, Veena & Kumar, Amit & Talaei, Alireza & Mondal, Md. Alam Hossain, 2017. "Energy efficiency improvement opportunities and associated greenhouse gas abatement costs for the residential sector," Energy, Elsevier, vol. 118(C), pages 795-807.
    9. Anna Laura Pisello & Gloria Pignatta & Veronica Lucia Castaldo & Franco Cotana, 2014. "Experimental Analysis of Natural Gravel Covering as Cool Roofing and Cool Pavement," Sustainability, MDPI, vol. 6(8), pages 1-17, July.
    10. Rojas-Hernandez, Rocío Estefanía & Rubio-Marcos, Fernando & Rodriguez, Miguel Ángel & Fernandez, José Francisco, 2018. "Long lasting phosphors: SrAl2O4:Eu, Dy as the most studied material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2759-2770.
    11. Fabiani, Claudia & Chiatti, Chiara & Pisello, Anna Laura, 2021. "Development of photoluminescent composites for energy efficiency in smart outdoor lighting applications: An experimental and numerical investigation," Renewable Energy, Elsevier, vol. 172(C), pages 1-15.
    12. Chambers, Jonathan & Hollmuller, Pierre & Bouvard, Olivia & Schueler, Andreas & Scartezzini, Jean-Louis & Azar, Elie & Patel, Martin K., 2019. "Evaluating the electricity saving potential of electrochromic glazing for cooling and lighting at the scale of the Swiss non-residential national building stock using a Monte Carlo model," Energy, Elsevier, vol. 185(C), pages 136-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiatti, Chiara & Fabiani, Claudia & Pisello, Anna Laura, 2023. "Toward the energy optimization of smart lighting systems through the luminous potential of photoluminescence," Energy, Elsevier, vol. 266(C).
    2. Adriana H. Martínez & Teresa López-Montero & Rodrigo Miró & Ricard Puig, 2023. "Photoluminescent Applications for Urban Pavements," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    3. Alimohammadian, Mehdi & Dinarvand, Saeed & Mahian, Omid, 2022. "Innovative strategy of passive sub-ambient radiative cooler through incorporation of a thermal rectifier to double-layer nanoparticle-based coating," Energy, Elsevier, vol. 247(C).
    4. Marchini, F. & Chiatti, C. & Fabiani, C. & Pisello, A.L., 2023. "Development of an innovative translucent–photoluminescent coating for smart windows applications: An experimental and numerical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabiani, Claudia & Chiatti, Chiara & Pisello, Anna Laura, 2021. "Development of photoluminescent composites for energy efficiency in smart outdoor lighting applications: An experimental and numerical investigation," Renewable Energy, Elsevier, vol. 172(C), pages 1-15.
    2. Fabiani, Claudia & Gambucci, Marta & Chiatti, Chiara & Zampini, Giulia & Latterini, Loredana & Pisello, Anna Laura, 2022. "Towards field implementation of photoluminescence in the built environment for passive cooling and lighting energy efficiency," Applied Energy, Elsevier, vol. 324(C).
    3. Chiatti, Chiara & Fabiani, Claudia & Bondi, Roberto & Zampini, Giulia & Latterini, Loredana & Pisello, Anna Laura, 2023. "Controlled combination of phosphorescent and fluorescent materials to exploit energy-saving potential in the built environment," Energy, Elsevier, vol. 275(C).
    4. Angeliki Kitsopoulou & Evangelos Bellos & Christos Tzivanidis, 2024. "An Up-to-Date Review of Passive Building Envelope Technologies for Sustainable Design," Energies, MDPI, vol. 17(16), pages 1-55, August.
    5. Fabiani, C. & Castaldo, V.L. & Pisello, A.L., 2020. "Thermochromic materials for indoor thermal comfort improvement: Finite difference modeling and validation in a real case-study building," Applied Energy, Elsevier, vol. 262(C).
    6. Chiatti, Chiara & Kousis, Ioannis & Fabiani, Claudia & Pisello, Anna Laura, 2022. "Effect of optimized photoluminescence on luminous and passive cooling potential: A new combined experimental and numerical approach applied to yellow-emitting glass tiles," Renewable Energy, Elsevier, vol. 196(C), pages 28-39.
    7. Vivian Welch & Christine M. Mathew & Panteha Babelmorad & Yanfei Li & Elizabeth T. Ghogomu & Johan Borg & Monserrat Conde & Elizabeth Kristjansson & Anne Lyddiatt & Sue Marcus & Jason W. Nickerson & K, 2021. "Health, social care and technological interventions to improve functional ability of older adults living at home: An evidence and gap map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    8. Erkmen Giray Aslim, 2019. "The Relationship Between Health Insurance and Early Retirement: Evidence from the Affordable Care Act," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 45(1), pages 112-140, January.
    9. Nihan Akyelken, 2017. "Mobility-Related Economic Exclusion: Accessibility and Commuting Patterns in Industrial Zones in Turkey," Social Inclusion, Cogitatio Press, vol. 5(4), pages 175-182.
    10. Dreher, Axel & Fuchs, Andreas & Langlotz, Sarah, 2019. "The effects of foreign aid on refugee flows," European Economic Review, Elsevier, vol. 112(C), pages 127-147.
    11. Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Achim Truger & Andrew Wa, 2016. "The Elusive Recovery," SciencePo Working papers Main hal-03459084, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Achim Truger & Andrew Wa, 2016. "The Elusive Recovery," PSE-Ecole d'économie de Paris (Postprint) hal-03459084, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Thomas Theobald & Achim , 2016. "The Elusive Recovery," PSE Working Papers hal-03612850, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Achim Truger & Andrew Wa, 2016. "The Elusive Recovery," Post-Print hal-03459084, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Thomas Theobald & Achim , 2016. "The Elusive Recovery," Working Papers hal-03612850, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Thomas Theobald & Achim , 2016. "The Elusive Recovery," SciencePo Working papers Main hal-03612850, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Thomas Theobald & Achim , 2016. "The Elusive Recovery," PSE-Ecole d'économie de Paris (Postprint) hal-03612850, HAL.
    12. Billari, Francesco C. & Giuntella, Osea & Stella, Luca, 2018. "Broadband internet, digital temptations, and sleep," Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 58-76.
    13. Ekaterina Aleksandrova & Kristian Behrens & Maria Kuznetsova, 2020. "Manufacturing (co)agglomeration in a transition country: Evidence from Russia," Journal of Regional Science, Wiley Blackwell, vol. 60(1), pages 88-128, January.
    14. Werner Eichhorst & Ulf Rinne, 2017. "Digital Challenges for the Welfare State," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 18(04), pages 03-08, December.
    15. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    16. Bruno Biais & Fany Declerck & Sophie Moinas, 2016. "Who supplies liquidity, how and when?," BIS Working Papers 563, Bank for International Settlements.
    17. Wang, Yanqiu & Ji, Jie & Sun, Wei & Yuan, Weiqi & Cai, Jingyong & Guo, Chao & He, Wei, 2016. "Experiment and simulation study on the optimization of the PV direct-coupled solar water heating system," Energy, Elsevier, vol. 100(C), pages 154-166.
    18. Chen, Cheng & Senga, Tatsuro & Sun, Chang & Zhang, Hongyong, 2023. "Uncertainty, imperfect information, and expectation formation over the firm’s life cycle," Journal of Monetary Economics, Elsevier, vol. 140(C), pages 60-77.
    19. Julie Vinck & Idunn Brekke, 2019. "Gender and education inequalities in parental employment when having a young child with increased care needs: Belgium and Norway compared," Working Papers 1904, Herman Deleeck Centre for Social Policy, University of Antwerp.
    20. Alvarez, Camila H. & Evans, Clare Rosenfeld, 2021. "Intersectional environmental justice and population health inequalities: A novel approach," Social Science & Medicine, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:231:y:2021:i:c:s036054422101063x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.