IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v362y2024ics0306261924003672.html
   My bibliography  Save this article

Exploring the potential of phosphorescence for mitigating urban overheating: First time representation in an Urban Canopy Model

Author

Listed:
  • Chiatti, Chiara
  • Fabiani, Claudia
  • Huang, Xinjie
  • Bou-Zeid, Elie
  • Pisello, Anna Laura

Abstract

Phosphorescence (PP) has emerged as a promising passive cooling solution for the built environment, characterized by its ability to emit radiation persistently after photon absorption, thereby enhancing the solar radiation rejection capability and effective albedo of the surface. While various compounds have shown excellent properties for energy-saving purposes, assessing their benefits for the built environment towards their actual implementation still remains a challenge. To bridge the gap between laboratory-scale characterizations and real-world applications, this study employs the Princeton Urban Canopy Model (PUCM) to assess the surface cooling potential of PP coatings. This research represents the first numerical modeling of phosphorescence, extrapolating findings from experimentally validated parameters to conditions and scale of real cities. Results demonstrate the substantial capacity of PP to ameliorate surface overheating in urban areas, potentially reducing surface temperatures by up to −2.6 °C when optimized. Additionally, material optimization emerges as a crucial factor for exploiting the potential of phosphorescence in mitigating urban overheating, highlighting its strategic relevance for the urban canopy environment.

Suggested Citation

  • Chiatti, Chiara & Fabiani, Claudia & Huang, Xinjie & Bou-Zeid, Elie & Pisello, Anna Laura, 2024. "Exploring the potential of phosphorescence for mitigating urban overheating: First time representation in an Urban Canopy Model," Applied Energy, Elsevier, vol. 362(C).
  • Handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003672
    DOI: 10.1016/j.apenergy.2024.122984
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003672
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122984?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chiatti, Chiara & Fabiani, Claudia & Pisello, Anna Laura, 2023. "Toward the energy optimization of smart lighting systems through the luminous potential of photoluminescence," Energy, Elsevier, vol. 266(C).
    2. Oleksandra Khalaim & Olena Zabarna & Taras Kazantsev & Ihor Panas & Oleksandr Polishchuk, 2021. "Urban Green Infrastructure Inventory as a Key Prerequisite to Sustainable Cities in Ukraine under Extreme Heat Events," Sustainability, MDPI, vol. 13(5), pages 1-23, February.
    3. Marchini, F. & Chiatti, C. & Fabiani, C. & Pisello, A.L., 2023. "Development of an innovative translucent–photoluminescent coating for smart windows applications: An experimental and numerical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Chiatti, Chiara & Fabiani, Claudia & Bondi, Roberto & Zampini, Giulia & Latterini, Loredana & Pisello, Anna Laura, 2023. "Controlled combination of phosphorescent and fluorescent materials to exploit energy-saving potential in the built environment," Energy, Elsevier, vol. 275(C).
    5. Ulpiani, Giulia, 2019. "Water mist spray for outdoor cooling: A systematic review of technologies, methods and impacts," Applied Energy, Elsevier, vol. 254(C).
    6. Fabiani, Claudia & Gambucci, Marta & Chiatti, Chiara & Zampini, Giulia & Latterini, Loredana & Pisello, Anna Laura, 2022. "Towards field implementation of photoluminescence in the built environment for passive cooling and lighting energy efficiency," Applied Energy, Elsevier, vol. 324(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wojciech Durlak & Margot Dudkiewicz & Małgorzata Milecka, 2022. "A Combined Methods of Senile Trees Inventory in Sustainable Urban Greenery Management on the Example of the City of Sandomierz (Poland)," Land, MDPI, vol. 11(11), pages 1-29, October.
    2. Chiatti, Chiara & Fabiani, Claudia & Bondi, Roberto & Zampini, Giulia & Latterini, Loredana & Pisello, Anna Laura, 2023. "Controlled combination of phosphorescent and fluorescent materials to exploit energy-saving potential in the built environment," Energy, Elsevier, vol. 275(C).
    3. Ana Tejero‐González & Antonio Franco‐Salas, 2022. "Direct evaporative cooling from wetted surfaces: Challenges for a clean air conditioning solution," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
    4. Tejero-González, A. & Franco-Salas, A., 2021. "Optimal operation of evaporative cooling pads: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Cui, Xin & Yan, Weichao & Liu, Yilin & Zhao, Min & Jin, Liwen, 2020. "Performance analysis of a hollow fiber membrane-based heat and mass exchanger for evaporative cooling," Applied Energy, Elsevier, vol. 271(C).
    6. Yongguang Hu & Yongkang Chen & Wuzhe Wei & Zhiyuan Hu & Pingping Li, 2021. "Optimization Design of Spray Cooling Fan Based on CFD Simulation and Field Experiment for Horticultural Crops," Agriculture, MDPI, vol. 11(6), pages 1-18, June.
    7. Chiatti, Chiara & Fabiani, Claudia & Pisello, Anna Laura, 2023. "Toward the energy optimization of smart lighting systems through the luminous potential of photoluminescence," Energy, Elsevier, vol. 266(C).
    8. Rolandas Bleizgys & Jonas Čėsna & Savelii Kukharets & Oleksandr Medvedskyi, 2023. "Statistical Analysis of the Air-Cooling Process in a Cowshed," Agriculture, MDPI, vol. 13(11), pages 1-15, November.
    9. Hajkowicz, Stefan & Reeson, Andrew & Evans, David B & Bratanova, Alexandra & Cameron, Lucy, 2021. "Industry Growth Opportunities: A technical report to support the Western Parkland City Economic Development Strategy," MPRA Paper 121104, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.