IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v257y2020ics0306261919316289.html
   My bibliography  Save this article

Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation

Author

Listed:
  • Wu, Xiao
  • Wang, Meihong
  • Liao, Peizhi
  • Shen, Jiong
  • Li, Yiguo

Abstract

Solvent-based post-combustion CO2 capture (PCC) appears to be the most effective choice to overcome the CO2 emission issue of fossil fuel fired power plants. To make the PCC better suited for power plants, growing interest has been directed to the flexible operation of PCC in the past ten years. The flexible operation requires the PCC system to adapt to the strong flue gas flow rate change and to adjust the carbon capture level rapidly in wide operating range. In-depth study of the dynamic characteristics of the PCC process and developing a suitable control approach are the keys to meet this challenge. This paper provides a critical review for the dynamic research of the solvent–based PCC process including first-principle modelling, data-driven system/process identification and the control design studies, with their main features being listed and discussed. The existent studies have been classified according to the approaches used and their advantages and limitations have been summarized. Potential future research opportunities for the flexible operation of solvent-based PCC are also given in this review.

Suggested Citation

  • Wu, Xiao & Wang, Meihong & Liao, Peizhi & Shen, Jiong & Li, Yiguo, 2020. "Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation," Applied Energy, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:appene:v:257:y:2020:i:c:s0306261919316289
    DOI: 10.1016/j.apenergy.2019.113941
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919316289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113941?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oh, Se-Young & Yun, Seokwon & Kim, Jin-Kuk, 2018. "Process integration and design for maximizing energy efficiency of a coal-fired power plant integrated with amine-based CO2 capture process," Applied Energy, Elsevier, vol. 216(C), pages 311-322.
    2. Jiang, Kaiqi & Li, Kangkang & Yu, Hai & Chen, Zuliang & Wardhaugh, Leigh & Feron, Paul, 2017. "Advancement of ammonia based post-combustion CO2 capture using the advanced flash stripper process," Applied Energy, Elsevier, vol. 202(C), pages 496-506.
    3. Mores, Patricia & Scenna, Nicolás & Mussati, Sergio, 2012. "CO2 capture using monoethanolamine (MEA) aqueous solution: Modeling and optimization of the solvent regeneration and CO2 desorption process," Energy, Elsevier, vol. 45(1), pages 1042-1058.
    4. Wang, Dandan & Li, Sheng & Liu, Feng & Gao, Lin & Sui, Jun, 2018. "Post combustion CO2 capture in power plant using low temperature steam upgraded by double absorption heat transformer," Applied Energy, Elsevier, vol. 227(C), pages 603-612.
    5. Wu, Xiao & Wang, Meihong & Shen, Jiong & Li, Yiguo & Lawal, Adekola & Lee, Kwang Y., 2019. "Reinforced coordinated control of coal-fired power plant retrofitted with solvent based CO2 capture using model predictive controls," Applied Energy, Elsevier, vol. 238(C), pages 495-515.
    6. Koronaki, I.P. & Prentza, L. & Papaefthimiou, V., 2015. "Modeling of CO2 capture via chemical absorption processes − An extensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 547-566.
    7. Joel, Atuman S. & Wang, Meihong & Ramshaw, Colin & Oko, Eni, 2017. "Modelling, simulation and analysis of intensified regenerator for solvent based carbon capture using rotating packed bed technology," Applied Energy, Elsevier, vol. 203(C), pages 11-25.
    8. Madeddu, Claudio & Errico, Massimiliano & Baratti, Roberto, 2018. "Process analysis for the carbon dioxide chemical absorption–regeneration system," Applied Energy, Elsevier, vol. 215(C), pages 532-542.
    9. Sipöcz, Nikolett & Tobiesen, Finn Andrew & Assadi, Mohsen, 2011. "The use of Artificial Neural Network models for CO2 capture plants," Applied Energy, Elsevier, vol. 88(7), pages 2368-2376, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N.Borhani, Tohid & Wang, Meihong, 2019. "Role of solvents in CO2 capture processes: The review of selection and design methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Wu, Xiao & Wang, Meihong & Shen, Jiong & Li, Yiguo & Lawal, Adekola & Lee, Kwang Y., 2019. "Reinforced coordinated control of coal-fired power plant retrofitted with solvent based CO2 capture using model predictive controls," Applied Energy, Elsevier, vol. 238(C), pages 495-515.
    3. Oko, Eni & Ramshaw, Colin & Wang, Meihong, 2018. "Study of intercooling for rotating packed bed absorbers in intensified solvent-based CO2 capture process," Applied Energy, Elsevier, vol. 223(C), pages 302-316.
    4. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    5. Wu, Xiao & Wang, Meihong & Lee, Kwang Y., 2020. "Flexible operation of supercritical coal-fired power plant integrated with solvent-based CO2 capture through collaborative predictive control," Energy, Elsevier, vol. 206(C).
    6. Zheng, Yawen & Gao, Lin & He, Song, 2023. "Analysis of the mechanism of energy consumption for CO2 capture in a power system," Energy, Elsevier, vol. 262(PA).
    7. Otitoju, Olajide & Oko, Eni & Wang, Meihong, 2021. "Technical and economic performance assessment of post-combustion carbon capture using piperazine for large scale natural gas combined cycle power plants through process simulation," Applied Energy, Elsevier, vol. 292(C).
    8. Yue Hu & Yachi Gao & Hui Lv & Gang Xu & Shijie Dong, 2018. "A New Integration System for Natural Gas Combined Cycle Power Plants with CO 2 Capture and Heat Supply," Energies, MDPI, vol. 11(11), pages 1-13, November.
    9. Wang, Rujie & Liu, Shanshan & Wang, Lidong & Li, Qiangwei & Zhang, Shihan & Chen, Bo & Jiang, Lei & Zhang, Yifeng, 2019. "Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas," Applied Energy, Elsevier, vol. 242(C), pages 302-310.
    10. Fu, Wenfeng & Wang, Lanjing & Yang, Yongping, 2021. "Optimal design for double reheat coal-fired power plants with post-combustion CO2 capture: A novel thermal system integration with a carbon capture turbine," Energy, Elsevier, vol. 221(C).
    11. Song He & Yawen Zheng, 2024. "CO 2 Capture Cost Reduction Potential of the Coal-Fired Power Plants under High Penetration of Renewable Power in China," Energies, MDPI, vol. 17(9), pages 1-16, April.
    12. Wu, Xiao & Shen, Jiong & Wang, Meihong & Lee, Kwang Y., 2020. "Intelligent predictive control of large-scale solvent-based CO2 capture plant using artificial neural network and particle swarm optimization," Energy, Elsevier, vol. 196(C).
    13. Xu, Cheng & Li, Xiaosa & Xin, Tuantuan & Liu, Xin & Xu, Gang & Wang, Min & Yang, Yongping, 2019. "A thermodynamic analysis and economic assessment of a modified de-carbonization coal-fired power plant incorporating a supercritical CO2 power cycle and an absorption heat transformer," Energy, Elsevier, vol. 179(C), pages 30-45.
    14. Zhang, Zhiwei & Hong, Suk-Hoon & Lee, Chang-Ha, 2023. "Role and impact of wash columns on the performance of chemical absorption-based CO2 capture process for blast furnace gas in iron and steel industries," Energy, Elsevier, vol. 271(C).
    15. Arshadi, M. & Taghvaei, H. & Abdolmaleki, M.K. & Lee, M. & Eskandarloo, H. & Abbaspourrad, A., 2019. "Carbon dioxide absorption in water/nanofluid by a symmetric amine-based nanodendritic adsorbent," Applied Energy, Elsevier, vol. 242(C), pages 1562-1572.
    16. Xie, Weiyi & Chen, Xiaoping & Ma, Jiliang & Liu, Daoyin & Cai, Tianyi & Wu, Ye, 2019. "Energy analyses and process integration of coal-fired power plant with CO2 capture using sodium-based dry sorbents," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    17. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    18. Zhang, Yi & Liu, Jinfeng & Yang, Tingting & Liu, Jianbang & Shen, Jiong & Fang, Fang, 2021. "Dynamic modeling and control of direct air-cooling condenser pressure considering couplings with adjacent systems," Energy, Elsevier, vol. 236(C).
    19. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    20. Alsanousie, Abdurrahman A. & Elsamni, Osama A. & Attia, Abdelhamid E. & Elhelw, Mohamed, 2021. "Transient and troubleshoots management of aged small-scale steam power plants using Aspen Plus Dynamics," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:257:y:2020:i:c:s0306261919316289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.