IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v271y2023ics0360544223004796.html
   My bibliography  Save this article

Effective thermal conductivity of metal hydride particle bed: Theoretical model and experimental validation

Author

Listed:
  • Bai, Xiao-Shuai
  • Rong, Long
  • Yang, Wei-Wei
  • Yang, Fu-Sheng

Abstract

It is essential to accurately predict the effective thermal conductivities of metal hydride (MH) beds for simulating the dynamic hydrogen storage of MH reactors. In this study, a 3-D analysis model was established to detailedly analyze the contributions of different heat transfer pathways on overall heat transfer of particle bed. The results indicate more than 95% heat quantity is transferred through the particle-gas film-particle pathway. Besides, taking the LaNi5 particle bed (λs equals 12.5 Wm−1K−1) as an example, only 26.2% gas volume contributes to transferring 90% heat quantity, proving the existence of heat transfer concentrating (HTC). Thus, a heat transfer concentrating model for predicting effective thermal conductivities of particle beds was established. The predicted thermal conductivities of HTC model were compared with six different models and the experimental data in references. The prediction accuracy and applicability of HTC model are the best. Then, the thermal conductivities of LaNi5 and Fe particle beds were experimentally measured. The predicted thermal conductivities by HTC model agree great with the experimental data, and the mean prediction errors are less than 7%. Finally, the HTC model is applicable within the porosity and thermal conductivity ratio from 0.33 to 0.68 and 1 to 8915, respectively.

Suggested Citation

  • Bai, Xiao-Shuai & Rong, Long & Yang, Wei-Wei & Yang, Fu-Sheng, 2023. "Effective thermal conductivity of metal hydride particle bed: Theoretical model and experimental validation," Energy, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004796
    DOI: 10.1016/j.energy.2023.127085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223004796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study," Energy, Elsevier, vol. 220(C).
    2. Paskevicius, M. & Sheppard, D.A. & Williamson, K. & Buckley, C.E., 2015. "Metal hydride thermal heat storage prototype for concentrating solar thermal power," Energy, Elsevier, vol. 88(C), pages 469-477.
    3. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Dai, Zhou-Qiao & Yang, Fu-Sheng, 2022. "Parametric optimization of coupled fin-metal foam metal hydride bed towards enhanced hydrogen absorption performance of metal hydride hydrogen storage device," Energy, Elsevier, vol. 243(C).
    4. Lutz, Michael & Bhouri, Maha & Linder, Marc & Bürger, Inga, 2019. "Adiabatic magnesium hydride system for hydrogen storage based on thermochemical heat storage: Numerical analysis of the dehydrogenation," Applied Energy, Elsevier, vol. 236(C), pages 1034-1048.
    5. Garcia, Gabriel & Arriola, Emmanuel & Chen, Wei-Hsin & De Luna, Mark Daniel, 2021. "A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability," Energy, Elsevier, vol. 217(C).
    6. Khosravi, A. & Koury, R.N.N. & Machado, L. & Pabon, J.J.G., 2018. "Energy, exergy and economic analysis of a hybrid renewable energy with hydrogen storage system," Energy, Elsevier, vol. 148(C), pages 1087-1102.
    7. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Hydrogen absorption performance investigation of a cylindrical MH reactor with rectangle heat exchange channels," Energy, Elsevier, vol. 232(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mou, Xiaofeng & Zhou, Wei & Bao, Zewei & Huang, Weixing, 2024. "Effective thermal conductivity of LaNi5 powder beds for hydrogen storage: Measurement and theoretical analysis," Renewable Energy, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Dai, Zhou-Qiao & Yang, Fu-Sheng, 2022. "Parametric optimization of coupled fin-metal foam metal hydride bed towards enhanced hydrogen absorption performance of metal hydride hydrogen storage device," Energy, Elsevier, vol. 243(C).
    2. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Hydrogen absorption performance investigation of a cylindrical MH reactor with rectangle heat exchange channels," Energy, Elsevier, vol. 232(C).
    3. Krishna, K. Venkata & Kanti, Praveen Kumar & Maiya, M.P., 2024. "A novel fin efficiency concept to optimize solid state hydrogen storage reactor," Energy, Elsevier, vol. 288(C).
    4. Bai, Xiao-Shuai & Su, Ju-Wen & Liu, Zhao & Qu, Zhi-Guo & Yang, Wei-Wei, 2024. "Heat transfer optimization for MH reactor using combined taguchi design and data-driven optimization method," Energy, Elsevier, vol. 307(C).
    5. Zhu, Chen & Mou, Xiaofeng & Bao, Zewei, 2024. "Optimization of tree-shaped fin structures towards enhanced discharging performance of metal hydride reactor for thermochemical heat storage based on entransy theory," Renewable Energy, Elsevier, vol. 220(C).
    6. Zheng, Shuaishuai & Wang, Yuqi & Wang, Di & Guan, Sinan & Liu, Ying & Wang, Feng & Zheng, Lan & Wu, Le & Gao, Xiong & Zhang, Zaoxiao, 2023. "Design and performance study on the primary & secondary helical-tube reactor," Energy, Elsevier, vol. 263(PD).
    7. Lesmana, Luthfan Adhy & Aziz, Muhammad, 2023. "Adoption of triply periodic minimal surface structure for effective metal hydride-based hydrogen storage," Energy, Elsevier, vol. 262(PA).
    8. Sera Ayten Cetinkaya & Tacettin Disli & Gamze Soyturk & Onder Kizilkan & C. Ozgur Colpan, 2022. "A Review on Thermal Coupling of Metal Hydride Storage Tanks with Fuel Cells and Electrolyzers," Energies, MDPI, vol. 16(1), pages 1-23, December.
    9. Malleswararao, K. & Aswin, N. & Srinivasa Murthy, S. & Dutta, Pradip, 2022. "Studies on long-term and buffer modes of operations of a thermal energy storage system using coupled metal hydrides," Energy, Elsevier, vol. 258(C).
    10. Hassan, I.A. & Ramadan, Haitham S. & Saleh, Mohamed A. & Hissel, Daniel, 2021. "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. khanmohammadi, Shoaib & Saadat-Targhi, Morteza, 2019. "Performance enhancement of an integrated system with solar flat plate collector for hydrogen production using waste heat recovery," Energy, Elsevier, vol. 171(C), pages 1066-1076.
    12. Chiu, Wei-Cheng & Hou, Shuhn-Shyurng & Chen, Chen-Yu & Lai, Wei-Hsiang & Horng, Rong-Fang, 2022. "Hydrogen-rich gas with low-level CO produced with autothermal methanol reforming providing a real-time supply used to drive a kW-scale PEMFC system," Energy, Elsevier, vol. 239(PC).
    13. Tang, Yuanyou & Wang, Yang & Long, Wuqiang & Xiao, Ge & Wang, Yongjian & Li, Weixing, 2023. "Analysis and enhancement of methanol reformer performance for online reforming based on waste heat recovery of methanol-diesel dual direct injection engine," Energy, Elsevier, vol. 283(C).
    14. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    15. Dong, Xiaofei & Zhao, Hongxia & Li, Hailong & Fucucci, Giacomo & Zheng, Qingrong & Zhao, Honghua & Pu, Jinhuan, 2024. "A novel design of a metal hydride reactor integrated with phase change material for H2 storage," Applied Energy, Elsevier, vol. 367(C).
    16. Abánades, Alberto & Álvaro, Ángel Jiménez & Guerrero Padrón, Juan, 2024. "Analysis of Sodium–Water Reaction as heat source for district heating and cooling," Energy, Elsevier, vol. 304(C).
    17. Liu, Shuai & Du, Pengzhu & Jia, Hekun & Zhang, Qiushi & Hao, Liutao, 2024. "Study on the impact of methanol steam reforming reactor channel structure on hydrogen production performance," Renewable Energy, Elsevier, vol. 228(C).
    18. Wang, Chao & Liao, Mingzheng & Jiang, Zhiqiang & Liang, Bo & Weng, Jiahong & Song, Qingbin & Zhao, Ming & Chen, Ying & Lei, Libin, 2022. "Sorption-enhanced propane partial oxidation hydrogen production for solid oxide fuel cell (SOFC) applications," Energy, Elsevier, vol. 247(C).
    19. Xiao Li & Lingzhi Yang & Yong Hao, 2023. "Absorption-Enhanced Methanol Steam Reforming for Low-Temperature Hydrogen Production with Carbon Capture," Energies, MDPI, vol. 16(20), pages 1-16, October.
    20. Feng, Penghui & Wu, Zhen & Zhang, Yang & Yang, Fusheng & Wang, Yuqi & Zhang, Zaoxiao, 2018. "Multi-level configuration and optimization of a thermal energy storage system using a metal hydride pair," Applied Energy, Elsevier, vol. 217(C), pages 25-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.