IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v271y2023ics0360544223003869.html
   My bibliography  Save this article

Development of a calibration methodology for fitting the response of a lithium-ion cell P2D model using real driving cycles

Author

Listed:
  • García, Antonio
  • Monsalve-Serrano, Javier
  • Ponce-Mora, Alberto
  • Fogué-Robles, Álvaro

Abstract

Pseudo-two-dimensional models based on physical processes are of significant relevance in this field, especially now that computational cost is getting more affordable with new technological advancements. Their biggest demerit is the difficulty in selecting a reduced number of parameters to consider during the optimization process to maintain the coherence of the physical processes and a good compromise in complexity. The current work proposes a methodology in which a selection of 14 critical constructive and performance parameters are iteratively fitted with an affordable computing cost using a genetic algorithm. The objective is to represent with high fidelity the experimental response of real 18,650 lithium-ion cells based on different cathode chemistries (NMC 811 and NCA). The results show that the proposed methodology can deliver better results if the calibration process is performed with a single dynamic driving cycle test instead of a series of constant C-rate curves, maintaining high reliability when simulating dynamic conditions such as driving cycles representative of real transport applications. The maximum voltage Root Mean Square Error (RMSE) of the validation profiles is not exceeding 0.0315 V and 0.0357 V for the NMC 811 and NCA cells, respectively.

Suggested Citation

  • García, Antonio & Monsalve-Serrano, Javier & Ponce-Mora, Alberto & Fogué-Robles, Álvaro, 2023. "Development of a calibration methodology for fitting the response of a lithium-ion cell P2D model using real driving cycles," Energy, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223003869
    DOI: 10.1016/j.energy.2023.126992
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223003869
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126992?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF," Energy, Elsevier, vol. 259(C).
    2. Wen, Jianping & Chen, Xing & Li, Xianghe & Li, Yikun, 2022. "SOH prediction of lithium battery based on IC curve feature and BP neural network," Energy, Elsevier, vol. 261(PA).
    3. Majid Astaneh & Jelena Andric & Lennart Löfdahl & Dario Maggiolo & Peter Stopp & Mazyar Moghaddam & Michel Chapuis & Henrik Ström, 2020. "Calibration Optimization Methodology for Lithium-Ion Battery Pack Model for Electric Vehicles in Mining Applications," Energies, MDPI, vol. 13(14), pages 1-27, July.
    4. Pan, Yue & Kong, Xiangdong & Yuan, Yuebo & Sun, Yukun & Han, Xuebing & Yang, Hongxin & Zhang, Jianbiao & Liu, Xiaoan & Gao, Panlong & Li, Yihui & Lu, Languang & Ouyang, Minggao, 2023. "Detecting the foreign matter defect in lithium-ion batteries based on battery pilot manufacturing line data analyses," Energy, Elsevier, vol. 262(PB).
    5. Xingxing Wang & Shengren Liu & Yujie Zhang & Shuaishuai Lv & Hongjun Ni & Yelin Deng & Yinnan Yuan, 2022. "A Review of the Power Battery Thermal Management System with Different Cooling, Heating and Coupling System," Energies, MDPI, vol. 15(6), pages 1-29, March.
    6. ., 2004. "Building electricity systems," Chapters, in: Electricity Reform in China, India and Russia, chapter 3, pages 50-84, Edward Elgar Publishing.
    7. Kim, Minho & Chun, Huiyong & Kim, Jungsoo & Kim, Kwangrae & Yu, Jungwook & Kim, Taegyun & Han, Soohee, 2019. "Data-efficient parameter identification of electrochemical lithium-ion battery model using deep Bayesian harmony search," Applied Energy, Elsevier, vol. 254(C).
    8. Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
    9. Zhou, Yong & Dong, Guangzhong & Tan, Qianqian & Han, Xueyuan & Chen, Chunlin & Wei, Jingwen, 2023. "State of health estimation for lithium-ion batteries using geometric impedance spectrum features and recurrent Gaussian process regression," Energy, Elsevier, vol. 262(PB).
    10. Yu Miao & Patrick Hynan & Annette von Jouanne & Alexandre Yokochi, 2019. "Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements," Energies, MDPI, vol. 12(6), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hao & Gao, Jingyi & Kang, Le & Zhang, Yi & Wang, Licheng & Wang, Kai, 2023. "State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network," Energy, Elsevier, vol. 283(C).
    2. Bao, Zhengyi & Nie, Jiahao & Lin, Huipin & Jiang, Jiahao & He, Zhiwei & Gao, Mingyu, 2023. "A global–local context embedding learning based sequence-free framework for state of health estimation of lithium-ion battery," Energy, Elsevier, vol. 282(C).
    3. Ming Zhang & Dongfang Yang & Jiaxuan Du & Hanlei Sun & Liwei Li & Licheng Wang & Kai Wang, 2023. "A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms," Energies, MDPI, vol. 16(7), pages 1-28, March.
    4. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    5. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    6. Anisa Surya Wijareni & Hendri Widiyandari & Agus Purwanto & Aditya Farhan Arif & Mohammad Zaki Mubarok, 2022. "Morphology and Particle Size of a Synthesized NMC 811 Cathode Precursor with Mixed Hydroxide Precipitate and Nickel Sulfate as Nickel Sources and Comparison of Their Electrochemical Performances in an," Energies, MDPI, vol. 15(16), pages 1-15, August.
    7. Alexandru Ciocan & Cosmin Ungureanu & Alin Chitu & Elena Carcadea & George Darie, 2020. "Electrical Longboard for Everyday Urban Commuting," Sustainability, MDPI, vol. 12(19), pages 1-14, September.
    8. Yuqing Zhang & Weijian Zhang & Chengxuan Wu & Fengwu Zhu & Zhida Li, 2023. "Prediction Model of Pigsty Temperature Based on ISSA-LSSVM," Agriculture, MDPI, vol. 13(9), pages 1-16, August.
    9. Piotr Krawczyk & Anna Śliwińska, 2020. "Eco-Efficiency Assessment of the Application of Large-Scale Rechargeable Batteries in a Coal-Fired Power Plant," Energies, MDPI, vol. 13(6), pages 1-16, March.
    10. Jack E. N. Swallow & Michael W. Fraser & Nis-Julian H. Kneusels & Jodie F. Charlton & Christopher G. Sole & Conor M. E. Phelan & Erik Björklund & Peter Bencok & Carlos Escudero & Virginia Pérez-Dieste, 2022. "Revealing solid electrolyte interphase formation through interface-sensitive Operando X-ray absorption spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. González, L.G. & Cordero-Moreno, Daniel & Espinoza, J.L., 2021. "Public transportation with electric traction: Experiences and challenges in an Andean city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Dai, Houde & Wang, Jiaxin & Huang, Yiyang & Lai, Yuan & Zhu, Liqi, 2024. "Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization," Renewable Energy, Elsevier, vol. 222(C).
    13. Harika Dasari & Eric Eisenbraun, 2021. "Predicting Capacity Fade in Silicon Anode-Based Li-Ion Batteries," Energies, MDPI, vol. 14(5), pages 1-16, March.
    14. Sewon Kim & Ju-Sik Kim & Lincoln Miara & Yan Wang & Sung-Kyun Jung & Seong Yong Park & Zhen Song & Hyungsub Kim & Michael Badding & JaeMyung Chang & Victor Roev & Gabin Yoon & Ryounghee Kim & Jung-Hwa, 2022. "High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Yao Ahoutou & Adrian Ilinca & Mohamad Issa, 2022. "Electrochemical Cells and Storage Technologies to Increase Renewable Energy Share in Cold Climate Conditions—A Critical Assessment," Energies, MDPI, vol. 15(4), pages 1-30, February.
    16. Liu, Xinghua & Li, Siqi & Tian, Jiaqiang & Wei, Zhongbao & Wang, Peng, 2023. "Health estimation of lithium-ion batteries with voltage reconstruction and fusion model," Energy, Elsevier, vol. 282(C).
    17. Kim, Kyunghyun & Choi, Jung-Il, 2023. "Effect of cell-to-cell variation and module configuration on the performance of lithium-ion battery systems," Applied Energy, Elsevier, vol. 352(C).
    18. Chang, Chun & Pan, Yaliang & Wang, Shaojin & Jiang, Jiuchun & Tian, Aina & Gao, Yang & Jiang, Yan & Wu, Tiezhou, 2024. "Fast EIS acquisition method based on SSA-DNN prediction model," Energy, Elsevier, vol. 288(C).
    19. Xingxing Wang & Peilin Ye & Shengren Liu & Yu Zhu & Yelin Deng & Yinnan Yuan & Hongjun Ni, 2023. "Research Progress of Battery Life Prediction Methods Based on Physical Model," Energies, MDPI, vol. 16(9), pages 1-20, April.
    20. Du, Jingcai & Zhang, Caiping & Li, Shuowei & Zhang, Linjing & Zhang, Weige, 2024. "Aging abnormality detection of lithium-ion batteries combining feature engineering and deep learning," Energy, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223003869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.