IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v270y2023ics0360544223002207.html
   My bibliography  Save this article

Poultry fat biodiesel as a fuel substitute in diesel-ethanol blends for DI-CI engine: Experimental, modeling and optimization

Author

Listed:
  • N, Santhosh
  • Afzal, Asif
  • V, Srikanth H.
  • Ağbulut, Ümit
  • Alahmadi, Ahmad Aziz
  • Gowda, Ashwin C.
  • Alwetaishi, Mamdooh
  • Shaik, Saboor
  • Hoang, Anh Tuan

Abstract

The purpose of the present study is to evolve an alternate non-edible source for the synthesis of biodiesel and use it as a fuel substitute in diesel-ethanol blends for DI-CI engines. The use of discarded poultry fat feedstocks for the sustainable production of biofuels in the current day scenario is a novel approach that is still in its embryonic stage. For the effective utilization of these processed biofuels, it is very much required to ascertain the characteristics and their performance attributes for different blends. In this regard, a set of experiments are planned to study the emission and performance attributes of a direct injection (DI) diesel engine operating on poultry fat biodiesel, and the three proportions of diesel-biodiesel-ethanol blends with varying vol. % over the wide load range on a diesel engine. The ethanol percentage in the blend is varied from 5 vol % to 15 vol % in increments of 5 vol % with the amount of poultry fat-based biodiesel kept constant at 10 vol %. The performance and emission characteristics, particularly, the CO, CO2, NOx, unused Oxygen, and hydrocarbon emissions are experimentally determined for different fuel blends. From the results, it is evident that the performance characteristics of the fuel blends improve with the addition of ethanol in the diesel-biodiesel blend. Further, regression modeling of the performance characteristics is carried out to optimize the blend and operating load conditions, and the regression model is evolved for developing a mathematical relation for predictions of the results for different operating conditions. Also, Artificial Neural Network (ANN) modeling of the performance characteristics is carried out at each stage to predict the outcomes for different blends and load conditions and provide a set of empirical relations for analyzing the performance characteristics of the engines operating on poultry fat-based biodiesel-diesel-ethanol blends. Excellent predictions are obtained using regression modeling and ANN with R-squared values above 0.9. Thus, the present work provides a newer model of effectively using the ANN for the systematic study of the performance characteristics of the biodiesel blends obtained from a set of experiments through various optimization methods for better performance and a significant reduction in emissions.

Suggested Citation

  • N, Santhosh & Afzal, Asif & V, Srikanth H. & Ağbulut, Ümit & Alahmadi, Ahmad Aziz & Gowda, Ashwin C. & Alwetaishi, Mamdooh & Shaik, Saboor & Hoang, Anh Tuan, 2023. "Poultry fat biodiesel as a fuel substitute in diesel-ethanol blends for DI-CI engine: Experimental, modeling and optimization," Energy, Elsevier, vol. 270(C).
  • Handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002207
    DOI: 10.1016/j.energy.2023.126826
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223002207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126826?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. rahimi, Hadi & Ghobadian, Barat & Yusaf, Talal & Najafi, Gholamhasan & Khatamifar, Mahdi, 2009. "Diesterol: An environment-friendly IC engine fuel," Renewable Energy, Elsevier, vol. 34(1), pages 335-342.
    2. El-Zoheiry, Radwan M. & EL-Seesy, Ahmed I. & Attia, Ali M.A. & He, Zhixia & El-Batsh, Hesham M., 2020. "Combustion and emission characteristics of Jojoba biodiesel-jet A1 mixtures applying a lean premixed pre-vaporized combustion techniques: An experimental investigation," Renewable Energy, Elsevier, vol. 162(C), pages 2227-2245.
    3. EL-Seesy, Ahmed I. & He, Zhixia & Kosaka, Hidenori, 2021. "Combustion and emission characteristics of a common rail diesel engine run with n-heptanol-methyl oleate mixtures," Energy, Elsevier, vol. 214(C).
    4. Karagoz, Mustafa & Uysal, Cuneyt & Agbulut, Umit & Saridemir, Suat, 2021. "Exergetic and exergoeconomic analyses of a CI engine fueled with diesel-biodiesel blends containing various metal-oxide nanoparticles," Energy, Elsevier, vol. 214(C).
    5. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & N. R. Banapurmath & Manzoore Elahi M. Soudagar & Nazia Hossain & Asif Afzal & C Ahamed Saleel, 2021. "Comparative Analysis of Performance, Emission, and Combustion Characteristics of a Common Rail Direct Injection Diesel Engine Powered with Three Different Biodiesel Blends," Energies, MDPI, vol. 14(18), pages 1-19, September.
    6. Ağbulut, Ümit & Polat, Fikret & Sarıdemir, Suat, 2021. "A comprehensive study on the influences of different types of nano-sized particles usage in diesel-bioethanol blends on combustion, performance, and environmental aspects," Energy, Elsevier, vol. 229(C).
    7. Asif Afzal & Saad Alshahrani & Abdulrahman Alrobaian & Abdulrajak Buradi & Sher Afghan Khan, 2021. "Power Plant Energy Predictions Based on Thermal Factors Using Ridge and Support Vector Regressor Algorithms," Energies, MDPI, vol. 14(21), pages 1-22, November.
    8. Attia, Ali M.A. & Kulchitskiy, A.R. & Nour, Mohamed & El-Seesy, Ahmed I. & Nada, Sameh A., 2022. "The influence of castor biodiesel blending ratio on engine performance including the determined diesel particulate matters composition," Energy, Elsevier, vol. 239(PA).
    9. Hosseini, Seyyed Hassan & Taghizadeh-Alisaraei, Ahmad & Ghobadian, Barat & Abbaszadeh-Mayvan, Ahmad, 2020. "Artificial neural network modeling of performance, emission, and vibration of a CI engine using alumina nano-catalyst added to diesel-biodiesel blends," Renewable Energy, Elsevier, vol. 149(C), pages 951-961.
    10. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    11. Kumar, A. Naresh & Kishore, P.S. & Raju, K. Brahma & Ashok, B. & Vignesh, R. & Jeevanantham, A.K. & Nanthagopal, K. & Tamilvanan, A., 2020. "Decanol proportional effect prediction model as additive in palm biodiesel using ANN and RSM technique for diesel engine," Energy, Elsevier, vol. 213(C).
    12. El-Shafay, A.S. & Ağbulut, Ümit & Attia, El-Awady & Touileb, Kamel Lounes & Gad, M.S., 2023. "Waste to energy: Production of poultry-based fat biodiesel and experimental assessment of its usability on engine behaviors," Energy, Elsevier, vol. 262(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gad, M.S. & Uysal, Cuneyt & El-Shafay, A.S. & Ağbulut, Ümit, 2024. "Exergetic and exergoeconomic assessments of a diesel engine fuelled with waste chicken fat biodiesel-diesel blends," Energy, Elsevier, vol. 293(C).
    2. Vallapudi Dhana Raju & Ibham Veza & Harish Venu & Manzoore Elahi M. Soudagar & M. A. Kalam & Tansir Ahamad & Prabhu Appavu & Jayashri N. Nair & S. M. Ashrafur Rahman, 2023. "Comprehensive Analysis of Compression Ratio, Exhaust Gas Recirculation, and Pilot Fuel Injection in a Diesel Engine Fuelled with Tamarind Biodiesel," Sustainability, MDPI, vol. 15(21), pages 1-21, October.
    3. Zhang, Liwu & Zhu, Guanghui & Chao, Yanpu & Chen, Liangbin & Ghanbari, Afshin, 2023. "Simultaneous prediction of CO2, CO, and NOx emissions of biodiesel-hydrogen blend combustion in compression ignition engines by supervised machine learning tools," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sathish, T. & Ağbulut, Ümit & Kumari, Vinod & Rathinasabapathi, G. & Karthikumar, K. & Rama Jyothi, N. & Ratna Kandavalli, Sumanth & Vijay Muni, T. & Saravanan, R., 2023. "Energy recovery from waste animal fats and detailed testing on combustion, performance, and emission analysis of IC engine fueled with their blends enriched with metal oxide nanoparticles," Energy, Elsevier, vol. 284(C).
    2. Gad, M.S. & Uysal, Cuneyt & El-Shafay, A.S. & Ağbulut, Ümit, 2024. "Exergetic and exergoeconomic assessments of a diesel engine fuelled with waste chicken fat biodiesel-diesel blends," Energy, Elsevier, vol. 293(C).
    3. Kalil Rahiman, M. & Santhoshkumar, S. & Subramaniam, D. & Avinash, A. & Pugazhendhi, Arivalagan, 2022. "Effects of oxygenated fuel pertaining to fuel analysis on diesel engine combustion and emission characteristics," Energy, Elsevier, vol. 239(PD).
    4. Krishnan, M. Gowthama & Rajkumar, Sundararajan, 2022. "Effects of dual fuel combustion on performance, emission and energy-exergy characteristics of diesel engine fuelled with diesel-isobutanol and biodiesel-isobutanol," Energy, Elsevier, vol. 252(C).
    5. Belal, Belal Y. & Li, Gesheng & Zhang, Zunhua & El-Batsh, H.M. & Moneib, Hany A. & Attia, Ali M.A., 2021. "The effect of swirl burner design configuration on combustion and emission characteristics of lean pre-vaporized premixed flames," Energy, Elsevier, vol. 228(C).
    6. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    7. Djati Wibowo Djamari & Muhammad Idris & Permana Andi Paristiawan & Muhammad Mujtaba Abbas & Olusegun David Samuel & Manzoore Elahi M. Soudagar & Safarudin Gazali Herawan & Davannendran Chandran & Abdu, 2022. "Diesel Spray: Development of Spray in Diesel Engine," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    8. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    9. Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Gurunathan Manikandan & P. Rajesh Kanna & Dawid Taler & Tomasz Sobota, 2023. "Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective," Energies, MDPI, vol. 16(4), pages 1-17, February.
    11. Cao, Yan & Habibi, Hamed & Zoghi, Mohammad & Raise, Amir, 2021. "Waste heat recovery of a combined regenerative gas turbine - recompression supercritical CO2 Brayton cycle driven by a hybrid solar-biomass heat source for multi-generation purpose: 4E analysis and pa," Energy, Elsevier, vol. 236(C).
    12. Đặng, Tấn-Hiệp & Nguyễn, Xuân-Hoàn & Chou, Chi-Lin & Chen, Bing-Hung, 2021. "Preparation of cancrinite-type zeolite from diatomaceous earth as transesterification catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 174(C), pages 347-358.
    13. Misra, R.D. & Murthy, M.S., 2011. "Blending of additives with biodiesels to improve the cold flow properties, combustion and emission performance in a compression ignition engine--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2413-2422, June.
    14. Safieddin Ardebili, M. & Ghobadian, B. & Najafi, G. & Chegeni, A., 2011. "Biodiesel production potential from edible oil seeds in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3041-3044, August.
    15. Milad Ghorbanzadeh & Mohamad Issa & Adrian Ilinca, 2023. "Experimental Underperformance Detection of a Fixed-Speed Diesel–Electric Generator Based on Exhaust Gas Emissions," Energies, MDPI, vol. 16(8), pages 1-15, April.
    16. Das, Arpita & Li, Hui & Kataki, Rupam & Agrawal, Pratibha S. & Moyon, N.S. & Gurunathan, Baskar & Rokhum, Samuel Lalthazuala, 2023. "Terminalia arjuna bark – A highly efficient renewable heterogeneous base catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 212(C), pages 185-196.
    17. Rahmath Abdulla & Eryati Derman & Thivyasri K.Mathialagan & Abu Zahrim Yaser & Mohd Armi Abu Samah & Jualang Azlan Gansau & Syed Umar Faruq Syed Najmuddin, 2022. "Biodiesel Production from Waste Palm Cooking Oil Using Immobilized Candida rugosa Lipase," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    18. Chen, Chao & Liang, Rui & Ge, Yadong & Li, Jian & Yan, Beibei & Cheng, Zhanjun & Tao, Junyu & Wang, Zhenyu & Li, Meng & Chen, Guanyi, 2022. "Fast characterization of biomass pyrolysis oil via combination of ATR-FTIR and machine learning models," Renewable Energy, Elsevier, vol. 194(C), pages 220-231.
    19. Kandasamy, Senthil Kumar & Selvaraj, Arun Saco & Rajagopal, Thundil Karuppa Raj, 2019. "Experimental investigations of ethanol blended biodiesel fuel on automotive diesel engine performance, emission and durability characteristics," Renewable Energy, Elsevier, vol. 141(C), pages 411-419.
    20. Ağbulut, Ümit & Elibol, Erdem & Demirci, Tuna & Sarıdemir, Suat & Gürel, Ali Etem & Rajak, Upendra & Afzal, Asif & Verma, Tikendra Nath, 2022. "Synthesis of graphene oxide nanoparticles and the influences of their usage as fuel additives on CI engine behaviors," Energy, Elsevier, vol. 244(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.