IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v7y2010i1p203-228d6843.html
   My bibliography  Save this article

Environmental Remediation and Conversion of Carbon Dioxide (CO 2 ) into Useful Green Products by Accelerated Carbonation Technology

Author

Listed:
  • Mihee Lim

    (Korea Institute of Geoscience and Mineral Resources (KIGAM), 92 Gwahang-no, Yuseong-gu, Daejeon 305-350, Korea)

  • Gi-Chun Han

    (Korea Institute of Geoscience and Mineral Resources (KIGAM), 92 Gwahang-no, Yuseong-gu, Daejeon 305-350, Korea)

  • Ji-Whan Ahn

    (Korea Institute of Geoscience and Mineral Resources (KIGAM), 92 Gwahang-no, Yuseong-gu, Daejeon 305-350, Korea)

  • Kwang-Suk You

    (Korea Institute of Geoscience and Mineral Resources (KIGAM), 92 Gwahang-no, Yuseong-gu, Daejeon 305-350, Korea)

Abstract

This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO 2 ), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called ‘accelerated carbonation’, which completes its fast reaction within few hours by using pure CO 2 . Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO 2 in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO 2 emissions and environmental remediation.

Suggested Citation

  • Mihee Lim & Gi-Chun Han & Ji-Whan Ahn & Kwang-Suk You, 2010. "Environmental Remediation and Conversion of Carbon Dioxide (CO 2 ) into Useful Green Products by Accelerated Carbonation Technology," IJERPH, MDPI, vol. 7(1), pages 1-26, January.
  • Handle: RePEc:gam:jijerp:v:7:y:2010:i:1:p:203-228:d:6843
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/7/1/203/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/7/1/203/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kakizawa, M. & Yamasaki, A. & Yanagisawa, Y., 2001. "A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid," Energy, Elsevier, vol. 26(4), pages 341-354.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aminu, Mohammed D. & Nabavi, Seyed Ali & Rochelle, Christopher A. & Manovic, Vasilije, 2017. "A review of developments in carbon dioxide storage," Applied Energy, Elsevier, vol. 208(C), pages 1389-1419.
    2. Li, Man & Cai, Guojun & Wang, Qiang & Liu, Songyu & He, Huan & Liu, Xuwenyan & Shi, Wen, 2023. "The state of the art of carbonation technology in geotechnical engineering: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
    2. Alicja Uliasz-Bocheńczyk, 2024. "A Comprehensive Review of CO 2 Mineral Sequestration Methods Using Coal Fly Ash for Carbon Capture, Utilisation, and Storage (CCUS) Technology," Energies, MDPI, vol. 17(22), pages 1-19, November.
    3. Noor Allesya Alis Ramli & Faradiella Mohd Kusin & Verma Loretta M. Molahid, 2021. "Influencing Factors of the Mineral Carbonation Process of Iron Ore Mining Waste in Sequestering Atmospheric Carbon Dioxide," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    4. Lombardi, L. & Carnevale, E.A., 2016. "Analysis of an innovative process for landfill gas quality improvement," Energy, Elsevier, vol. 109(C), pages 1107-1117.
    5. Enze Ren & Siyang Tang & Changjun Liu & Hairong Yue & Chun Li & Bin Liang, 2020. "Carbon dioxide mineralization for the disposition of blast‐furnace slag: reaction intensification using NaCl solutions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 436-448, April.
    6. Natalia Czaplicka & Donata Konopacka-Łyskawa, 2020. "Utilization of Gaseous Carbon Dioxide and Industrial Ca-Rich Waste for Calcium Carbonate Precipitation: A Review," Energies, MDPI, vol. 13(23), pages 1-25, November.
    7. Naraharisetti, Pavan Kumar & Yeo, Tze Yuen & Bu, Jie, 2019. "New classification of CO2 mineralization processes and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 220-233.
    8. Eloneva, Sanni & Teir, Sebastian & Salminen, Justin & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2008. "Fixation of CO2 by carbonating calcium derived from blast furnace slag," Energy, Elsevier, vol. 33(9), pages 1461-1467.
    9. Kodama, Satoshi & Nishimoto, Taiki & Yamamoto, Naoki & Yogo, Katsunori & Yamada, Koichi, 2008. "Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution," Energy, Elsevier, vol. 33(5), pages 776-784.
    10. Teir, Sebastian & Eloneva, Sanni & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2007. "Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production," Energy, Elsevier, vol. 32(4), pages 528-539.
    11. Bernard Jomari B. Razote & Mark Kenneth M. Maranan & Ramon Christian P. Eusebio & Richard D. Alorro & Arnel B. Beltran & Aileen H. Orbecido, 2019. "Determination of the Carbon Dioxide Sequestration Potential of a Nickel Mine Mixed Dump through Leaching Tests," Energies, MDPI, vol. 12(15), pages 1-19, July.
    12. Hyun Sic Park & JunYoung Han & Ju Sung Lee & Kwang-Mo Kim & Hyung Jun Jo & Byoung Ryul Min, 2016. "Comparison of Two Processes Forming CaCO 3 Precipitates by Electrolysis," Energies, MDPI, vol. 9(12), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:7:y:2010:i:1:p:203-228:d:6843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.