IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v268y2023ics0360544223000427.html
   My bibliography  Save this article

Energy, conventional exergy and advanced exergy analysis of cryogenic recuperative organic rankine cycle

Author

Listed:
  • Tian, Zhen
  • Chen, Xiaochen
  • Zhang, Yuan
  • Gao, Wenzhong
  • Chen, Wu
  • Peng, Hao

Abstract

In this study, a recuperative organic Rankine cycle (ORC) was designed with a three-fluid condenser for cryogenic cold energy recovery. An experimental setup with R290 as working fluid was constructed. Hot water and liquid nitrogen were the heat source and heat sink, respectively. The ORC performances were investigated under different heat source temperatures and heat sink flow rates. Both conventional and advanced exergy analyses were carried out based on the obtained experimental data. The optimum working condition was identified as the heat sink flow rate at 100 kg/h and heat source temperature at 45 °C. The results showed that the largest net power of the cryogenic recuperative ORC was 1.02 kW, the maximum thermal efficiency was 8.8%, and the maximum cold energy utilization efficiency was 22.5%. The conventional exergy analysis identified the condenser, which accounted for 62.6% of the total exergy destruction, as the priority of system optimization. However, the priority was ascribed to the expander based on the advanced exergy analysis, which showed that the avoidable endogenous exergy destruction rate of the expander was up to 54.0%. The findings would provide technical guidelines for the development and performance optimization of cryogenic ORCs.

Suggested Citation

  • Tian, Zhen & Chen, Xiaochen & Zhang, Yuan & Gao, Wenzhong & Chen, Wu & Peng, Hao, 2023. "Energy, conventional exergy and advanced exergy analysis of cryogenic recuperative organic rankine cycle," Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000427
    DOI: 10.1016/j.energy.2023.126648
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223000427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126648?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fallah, M. & Mohammadi, Z. & Mahmoudi, S.M. Seyed, 2022. "Advanced exergy analysis of the combined S–CO2/ORC system," Energy, Elsevier, vol. 241(C).
    2. Zhang, Hongsheng & Liu, Xingang & Liu, Yifeng & Duan, Chenghong & Dou, Zhan & Qin, Jiyun, 2021. "Energy and exergy analyses of a novel cogeneration system coupled with absorption heat pump and organic Rankine cycle based on a direct air cooling coal-fired power plant," Energy, Elsevier, vol. 229(C).
    3. Liao, Gaoliang & E, Jiaqiang & Zhang, Feng & Chen, Jingwei & Leng, Erwei, 2020. "Advanced exergy analysis for Organic Rankine Cycle-based layout to recover waste heat of flue gas," Applied Energy, Elsevier, vol. 266(C).
    4. Yuancheng Lin & Honghua Yang & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Low-Carbon Development for the Iron and Steel Industry in China and the World: Status Quo, Future Vision, and Key Actions," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    5. Petrakopoulou, Fontina & Tsatsaronis, George & Morosuk, Tatiana & Carassai, Anna, 2012. "Conventional and advanced exergetic analyses applied to a combined cycle power plant," Energy, Elsevier, vol. 41(1), pages 146-152.
    6. Choi, Hong Wone & Na, Sun-Ik & Hong, Sung Bin & Chung, Yoong & Kim, Dong Kyu & Kim, Min Soo, 2021. "Optimal design of organic Rankine cycle recovering LNG cold energy with finite heat exchanger size," Energy, Elsevier, vol. 217(C).
    7. Tian, Zhen & Gan, Wanlong & Qi, Zhixin & Tian, Molin & Gao, Wenzhong, 2022. "Experimental study of organic Rankine cycle with three-fluid recuperator for cryogenic cold energy recovery," Energy, Elsevier, vol. 242(C).
    8. Shao, Long & Ma, Xinling & Wei, Xinli & Hou, Zhonglan & Meng, Xiangrui, 2017. "Design and experimental study of a small-sized organic Rankine cycle system under various cooling conditions," Energy, Elsevier, vol. 130(C), pages 236-245.
    9. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    10. Tian, Zhen & Gan, Wanlong & Zou, Xianzhi & Zhang, Yuan & Gao, Wenzhong, 2022. "Performance prediction of a cryogenic organic Rankine cycle based on back propagation neural network optimized by genetic algorithm," Energy, Elsevier, vol. 254(PB).
    11. Dong, Shengming & Hu, Xiaowei & Huang, Jun Fang & Zhu, Tingting & Zhang, Yufeng & Li, Xiang, 2021. "Investigation on improvement potential of ORC system off-design performance by expander speed regulation based on theoretical and experimental exergy-energy analyses," Energy, Elsevier, vol. 220(C).
    12. Ouyang, Tiancheng & Tan, Jiaqi & Wu, Wencong & Xie, Shutao & Li, Difan, 2022. "Energy, exergy and economic benefits deriving from LNG-fired power plant: Cold energy power generation combined with carbon dioxide capture," Renewable Energy, Elsevier, vol. 195(C), pages 214-229.
    13. Tian, Zhen & Qi, Zhixin & Gan, Wanlong & Tian, Molin & Gao, Wenzhong, 2022. "A novel negative carbon-emission, cooling, and power generation system based on combined LNG regasification and waste heat recovery: Energy, exergy, economic, environmental (4E) evaluations," Energy, Elsevier, vol. 257(C).
    14. Morosuk, Tatiana & Tsatsaronis, George, 2008. "A new approach to the exergy analysis of absorption refrigeration machines," Energy, Elsevier, vol. 33(6), pages 890-907.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Liangqi & Yue, Huifeng & Wang, Jiangfeng & Lou, Juwei & Wang, Shunsen & Guo, Yumin & Deng, Bohao & Sun, Lu, 2023. "Thermodynamic analysis of a hybrid energy system coupling solar organic Rankine cycle and ground source heat pump: Exploring heat cascade utilization," Energy, Elsevier, vol. 284(C).
    2. Zecheng Zhao & Zhiwen Wang & Hu Wang & Hongwei Zhu & Wei Xiong, 2023. "Conventional and Advanced Exergy Analyses of Industrial Pneumatic Systems," Energies, MDPI, vol. 16(16), pages 1-23, August.
    3. Wang, Yuwei & Shi, Lin & Song, Minghao & Jia, Mengyao & Li, Bingkang, 2024. "Evaluating the energy-exergy-economy-environment performance of the biomass-photovoltaic-hydrogen integrated energy system based on hybrid multi-criterion decision-making model," Renewable Energy, Elsevier, vol. 224(C).
    4. Liu, Lintong & Zhai, Rongrong & Hu, Yangdi, 2023. "Multi-objective optimization with advanced exergy analysis of a wind-solar‑hydrogen multi-energy supply system," Applied Energy, Elsevier, vol. 348(C).
    5. Yang, Sheng & Wen, Jiakang & Liu, Zhiqiang & Deng, Chengwei & Xie, Nan, 2024. "3E analyses and multi-objective optimization of a liquid nitrogen wash based cogeneration system for electrical power and LNG production," Energy, Elsevier, vol. 297(C).
    6. Qi, Xinrui & Yang, Chunsheng & Huang, Mingyang & Ma, Zhenjun & Hnydiuk-Stefan, Anna & Feng, Ke & Siarry, Patrick & Królczyk, Grzegorz & Li, Z., 2024. "Conventional and advanced exergy-exergoeconomic-exergoenvironmental analyses of an organic Rankine cycle integrated with solar and biomass energy sources," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Xiaohui & Chen, Tao & Sun, Xiangyu & Song, Juanjuan & Zeng, Jiajun, 2022. "Conventional and advanced exergy analysis of a novel wind-to-heat system," Energy, Elsevier, vol. 261(PA).
    2. Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Advanced exergy analysis of an air conditioning system incorporating thermal energy storage," Energy, Elsevier, vol. 77(C), pages 945-952.
    3. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    4. Ustaoglu, Abid, 2020. "Parametric study of absorption refrigeration with vapor compression refrigeration cycle using wet, isentropic and azeotropic working fluids: Conventional and advanced exergy approach," Energy, Elsevier, vol. 201(C).
    5. Lu, Shengdong & Yang, Xinle & Bu, Shujuan & Li, Weikang & Yu, Ning & Wang, Xin & Dai, Wenzhi & Liu, Xunan, 2024. "Performance and parameter prediction of SCR–ORC system based on data–model fusion and twin data–driven," Energy, Elsevier, vol. 290(C).
    6. Bühler, Fabian & Nguyen, Tuong-Van & Jensen, Jonas Kjær & Holm, Fridolin Müller & Elmegaard, Brian, 2018. "Energy, exergy and advanced exergy analysis of a milk processing factory," Energy, Elsevier, vol. 162(C), pages 576-592.
    7. Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
    8. Chen, Jianyong & Havtun, Hans & Palm, Björn, 2015. "Conventional and advanced exergy analysis of an ejector refrigeration system," Applied Energy, Elsevier, vol. 144(C), pages 139-151.
    9. Wang, Yinglong & Chen, Zhengrun & Shen, Yuanyuan & Ma, Zhaoyuan & Li, Huiyuan & Liu, Xiaobin & Zhu, Zhaoyou & Qi, Jianguang & Cui, Peizhe & Wang, Lei & Ma, Yixin & Xu, Dongmei, 2021. "Advanced exergy and exergoeconomic analysis of an integrated system combining CO2 capture-storage and waste heat utilization processes," Energy, Elsevier, vol. 219(C).
    10. Şöhret, Yasin & Açıkkalp, Emin & Hepbasli, Arif & Karakoc, T. Hikmet, 2015. "Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts," Energy, Elsevier, vol. 90(P2), pages 1219-1228.
    11. Yamankaradeniz, Nurettin, 2016. "Thermodynamic performance assessments of a district heating system with geothermal by using advanced exergy analysis," Renewable Energy, Elsevier, vol. 85(C), pages 965-972.
    12. Erbay, Zafer & Hepbasli, Arif, 2017. "Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method," Energy, Elsevier, vol. 127(C), pages 502-515.
    13. Keçebaş, Ali & Gökgedik, Harun, 2015. "Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis," Energy, Elsevier, vol. 88(C), pages 746-755.
    14. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
    15. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    16. Koroglu, Turgay & Sogut, Oguz Salim, 2018. "Conventional and advanced exergy analyses of a marine steam power plant," Energy, Elsevier, vol. 163(C), pages 392-403.
    17. Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
    18. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
    19. Anvari, Simin & Khoshbakhti Saray, Rahim & Bahlouli, Keyvan, 2015. "Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production," Energy, Elsevier, vol. 91(C), pages 925-939.
    20. Daniarta, Sindu & Imre, Attila R. & Kolasiński, Piotr, 2024. "Exploring performance map: theoretical analysis of subcritical and transcritical power cycles with wet and isentropic working fluids," Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.