IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544224000343.html
   My bibliography  Save this article

Performance and parameter prediction of SCR–ORC system based on data–model fusion and twin data–driven

Author

Listed:
  • Lu, Shengdong
  • Yang, Xinle
  • Bu, Shujuan
  • Li, Weikang
  • Yu, Ning
  • Wang, Xin
  • Dai, Wenzhi
  • Liu, Xunan

Abstract

This paper introduced an integrated approach of data–model fusion coupled with twin data–driven to address the bottlenecks of low accuracy and poor stability in machine learning for performance prediction and parameter reverse prediction in the Separation Compression Recirculation Organic Rankine Cycle (SCR–ORC). Initially, a cyclic database of SCR–ORC for five distinct working fluids was established through rigorous thermodynamic calculations. Subsequently, a Back Propagation Neural Network (BPNN) data–driven scheme of Grey Wolf Optimization (GWO) was developed for precise predictions of SCR–ORC thermal efficiency, exergy efficiency, and key parameters. Finally, utilizing the prediction results, Response Surface Methodology (RSM) was employed to analyze interactions among various parameters affecting the performance of the SCR–ORC, and further research on parameter optimization was conducted. The results indicate that GWO–BPNN achieves prediction errors 1–2 orders of magnitude lower than BPNN in performance prediction; regarding parameter prediction, the relative errors in GWO–BPNN predictions exhibit greater stability, with relative errors for each parameter prediction ranging from 0.01 % to 1.12 %. The proposed method notably enhances prediction accuracy, and the optimization outcomes of the agent model closely align with those of the traditional thermodynamic model.

Suggested Citation

  • Lu, Shengdong & Yang, Xinle & Bu, Shujuan & Li, Weikang & Yu, Ning & Wang, Xin & Dai, Wenzhi & Liu, Xunan, 2024. "Performance and parameter prediction of SCR–ORC system based on data–model fusion and twin data–driven," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000343
    DOI: 10.1016/j.energy.2024.130263
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224000343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Jianzhao & Chu, Yin Ting & Ren, Jingzheng & Shen, Weifeng & He, Chang, 2023. "Integrating machine learning and mathematical programming for efficient optimization of operating conditions in organic Rankine cycle (ORC) based combined systems," Energy, Elsevier, vol. 281(C).
    2. Sekhar, Charan & Dahiya, Ratna, 2023. "Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand," Energy, Elsevier, vol. 268(C).
    3. Dong, Shengming & Zhang, Yufeng & He, Zhonglu & Deng, Na & Yu, Xiaohui & Yao, Sheng, 2018. "Investigation of Support Vector Machine and Back Propagation Artificial Neural Network for performance prediction of the organic Rankine cycle system," Energy, Elsevier, vol. 144(C), pages 851-864.
    4. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    5. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Wang, Chongyao & Zhang, Wujie & Wang, Yan, 2022. "Energy, economic and environmental dynamic response characteristics of organic Rankine cycle (ORC) system under different driving cycles," Energy, Elsevier, vol. 246(C).
    6. Zhang, Hongsheng & Liu, Xingang & Liu, Yifeng & Duan, Chenghong & Dou, Zhan & Qin, Jiyun, 2021. "Energy and exergy analyses of a novel cogeneration system coupled with absorption heat pump and organic Rankine cycle based on a direct air cooling coal-fired power plant," Energy, Elsevier, vol. 229(C).
    7. Zhang, Yuan & Wu, Xiaocheng & Tian, Zhen & Gao, Wenzhong & Peng, Hao & Yang, Ke, 2023. "Comparison of random forest, support vector regression, and long short term memory for performance prediction and optimization of a cryogenic organic rankine cycle (ORC)," Energy, Elsevier, vol. 280(C).
    8. Tian, Zhen & Gan, Wanlong & Zou, Xianzhi & Zhang, Yuan & Gao, Wenzhong, 2022. "Performance prediction of a cryogenic organic Rankine cycle based on back propagation neural network optimized by genetic algorithm," Energy, Elsevier, vol. 254(PB).
    9. Feng, Yong-qiang & Xu, Jing-wei & He, Zhi-xia & Hung, Tzu-Chen & Shao, Meng & Zhang, Fei-yang, 2022. "Numerical simulation and optimal design of scroll expander applied in a small-scale organic rankine cycle," Energy, Elsevier, vol. 260(C).
    10. Gu, Zhengzhao & Feng, Kewen & Ge, Lei & Quan, Long, 2023. "Dynamic modeling and optimization of organic Rankine cycle in the waste heat recovery of the hydraulic system," Energy, Elsevier, vol. 263(PB).
    11. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran, 2020. "Real-time realization of Dynamic Programming using machine learning methods for IC engine waste heat recovery system power optimization," Applied Energy, Elsevier, vol. 262(C).
    12. Liu, Zekuan & Wang, Zixuan & Cheng, Kunlin & Wang, Cong & Ha, Chan & Fei, Teng & Qin, Jiang, 2023. "Performance assessment of closed Brayton cycle-organic Rankine cycle lunar base energy system: Thermodynamic analysis, multi-objective optimization," Energy, Elsevier, vol. 278(PA).
    13. Yang, Wenhao & Feng, Huijun & Chen, Lingen & Ge, Yanlin, 2023. "Power and efficiency optimizations of a simple irreversible supercritical organic Rankine cycle," Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Zhang, Jian & Xing, Chengda & Yan, Yinlian & Yang, Anren & Wang, Yan, 2023. "Information theory-based dynamic feature capture and global multi-objective optimization approach for organic Rankine cycle (ORC) considering road environment," Applied Energy, Elsevier, vol. 348(C).
    2. Lu, Pei & Chen, Kaihuang & Luo, Xianglong & Wu, Wei & Liang, Yingzong & Chen, Jianyong & Chen, Ying, 2024. "Experimental and simulation study on a zeotropic ORC system using R1234ze(E)/R245fa as working fluid," Energy, Elsevier, vol. 292(C).
    3. Yu, Wenjin & Zhou, Peijian & Miao, Zhouqian & Zhao, Haoru & Mou, Jiegang & Zhou, Wenqiang, 2024. "Energy performance prediction of pump as turbine (PAT) based on PIWOA-BP neural network," Renewable Energy, Elsevier, vol. 222(C).
    4. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yang, Anren & Yan, Yinlian & Pan, Yachao & Wang, Yan, 2023. "Ensemble of self-organizing adaptive maps and dynamic multi-objective optimization for organic Rankine cycle (ORC) under transportation and driving environment," Energy, Elsevier, vol. 275(C).
    5. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan, 2022. "Evaluation of hybrid forecasting methods for organic Rankine cycle: Unsupervised learning-based outlier removal and partial mutual information-based feature selection," Applied Energy, Elsevier, vol. 311(C).
    6. Tian, Zhen & Chen, Xiaochen & Zhang, Yuan & Gao, Wenzhong & Chen, Wu & Peng, Hao, 2023. "Energy, conventional exergy and advanced exergy analysis of cryogenic recuperative organic rankine cycle," Energy, Elsevier, vol. 268(C).
    7. Tao, Hai & Alawi, Omer A. & Kamar, Haslinda Mohamed & Nafea, Ahmed Adil & AL-Ani, Mohammed M. & Abba, Sani I. & Salami, Babatunde Abiodun & Oudah, Atheer Y. & Mohammed, Mustafa K.A., 2024. "Development of integrative data intelligence models for thermo-economic performances prediction of hybrid organic rankine plants," Energy, Elsevier, vol. 292(C).
    8. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    9. Sun, Lei & Liu, Tianyuan & Wang, Ding & Huang, Chengming & Xie, Yonghui, 2022. "Deep learning method based on graph neural network for performance prediction of supercritical CO2 power systems," Applied Energy, Elsevier, vol. 324(C).
    10. Shi, Yao & Zhang, Zhiming & Chen, Xiaoqiang & Xie, Lei & Liu, Xueqin & Su, Hongye, 2023. "Data-Driven model identification and efficient MPC via quasi-linear parameter varying representation for ORC waste heat recovery system," Energy, Elsevier, vol. 271(C).
    11. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    12. Atif Maqbool Khan & Artur Wyrwa, 2024. "A Survey of Quantitative Techniques in Electricity Consumption—A Global Perspective," Energies, MDPI, vol. 17(19), pages 1-38, September.
    13. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    14. Wang, Lei & Wang, Xinyu & Zhao, Zhongchao, 2024. "Mid-term electricity demand forecasting using improved multi-mode reconstruction and particle swarm-enhanced support vector regression," Energy, Elsevier, vol. 304(C).
    15. Niu, Jintao & Wang, Jiansheng & Liu, Xueling, 2023. "Thermodynamic and economic analysis of organic Rankine cycle combined with flash cycle and ejector," Energy, Elsevier, vol. 282(C).
    16. Gu, Zhengzhao & Feng, Kewen & Ge, Lei & Quan, Long, 2023. "Dynamic modeling and optimization of organic Rankine cycle in the waste heat recovery of the hydraulic system," Energy, Elsevier, vol. 263(PB).
    17. Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    18. Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
    19. Milana Treshcheva & Irina Anikina & Dmitry Treshchev & Sergey Skulkin, 2022. "Heat Pump Capacity Selection for TPPs with Various Efficiency Levels," Energies, MDPI, vol. 15(12), pages 1-19, June.
    20. Zhang, Xiao-Han & Zhu, Qun-Xiong & He, Yan-Lin & Xu, Yuan, 2018. "Energy modeling using an effective latent variable based functional link learning machine," Energy, Elsevier, vol. 162(C), pages 883-891.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.