IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics0960148124002854.html
   My bibliography  Save this article

Evaluating the energy-exergy-economy-environment performance of the biomass-photovoltaic-hydrogen integrated energy system based on hybrid multi-criterion decision-making model

Author

Listed:
  • Wang, Yuwei
  • Shi, Lin
  • Song, Minghao
  • Jia, Mengyao
  • Li, Bingkang

Abstract

Integrating biomass, photovoltaic, and other renewable energy sources for hydrogen production can form a biomass-photovoltaic-hydrogen integrated energy system (BPH-IES). The system features multi-energy storage and joint supply, as well as cascaded utilization, is a promising co-generation way to meet the system's electricity, heat and hydrogen needs, and has significant energy-exergy-economy-environment (4E) performance. Therefore, scientific and effective evaluation of the BPH-IES is an important prerequisite for promoting its development. Firstly, by analyzing the structure of the BPH-IES system, this paper constructs a comprehensive performance evaluation index system of the system from the 4E dimensions. Secondly, a hybrid multi-criterion decision making (MCDM) framework for the 4E comprehensive performance evaluation of the BPH-IES is constructed, in which the anti-entropy weighting method is used to determine the objective weights, the subjective weights are determined by the decision making trial and evaluation laboratory method improved by intuitionistic fuzzy sets, and the final combined weighting results are obtained based on a game-theoretic method that the objective and subjective weights' heterogeneity can be fully minimized. The grey-relation-analysis-based measurement alternatives and ranking according to the compromise solution method is proposed to determine the ranking of alternatives. This paper selected 8 typical BPH-IES cases for 4E evaluation analysis. The results showed that energy performance is the core dimension that reflects the 4E performance of the system, and system's economy indicators such as energy supply income and energy supply cost will also significantly affect the system's 4E performance. Therefore, the 4E performance of BPH-IES can be effectively improved by expanding the system's demand and supply scale and increasing the system's installed proportion of clean energy and hydrogen penetration. Finally, the ranking consistency test, Leave-One-Out analysis and sample separation test demonstrate that the developed hybrid MCDM can ensure robustness meanwhile improve the decision efficiency.

Suggested Citation

  • Wang, Yuwei & Shi, Lin & Song, Minghao & Jia, Mengyao & Li, Bingkang, 2024. "Evaluating the energy-exergy-economy-environment performance of the biomass-photovoltaic-hydrogen integrated energy system based on hybrid multi-criterion decision-making model," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002854
    DOI: 10.1016/j.renene.2024.120220
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124002854
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120220?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shrestha, Anil & Mustafa, Andy Ali & Htike, Myo Myo & You, Vithyea & Kakinaka, Makoto, 2022. "Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy," Renewable Energy, Elsevier, vol. 199(C), pages 419-432.
    2. Liu, Zhen & Saydaliev, Hayot Berk & Lan, Jing & Ali, Sajid & Anser, Muhammad Khalid, 2022. "Assessing the effectiveness of biomass energy in mitigating CO2 emissions: Evidence from Top-10 biomass energy consumer countries," Renewable Energy, Elsevier, vol. 191(C), pages 842-851.
    3. Chen, Zhang & Yiliang, Xie & Hongxia, Zhang & Yujie, Gu & Xiongwen, Zhang, 2023. "Optimal design and performance assessment for a solar powered electricity, heating and hydrogen integrated energy system," Energy, Elsevier, vol. 262(PA).
    4. Tian, Zhen & Chen, Xiaochen & Zhang, Yuan & Gao, Wenzhong & Chen, Wu & Peng, Hao, 2023. "Energy, conventional exergy and advanced exergy analysis of cryogenic recuperative organic rankine cycle," Energy, Elsevier, vol. 268(C).
    5. Zhou, Dengji & Yan, Siyun & Huang, Dawen & Shao, Tiemin & Xiao, Wang & Hao, Jiarui & Wang, Chen & Yu, Tianqi, 2022. "Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes," Energy, Elsevier, vol. 239(PA).
    6. Loy-Benitez, Jorge & Safder, Usman & Nguyen, Hai-Tra & Li, Qian & Woo, TaeYong & Yoo, ChangKyoo, 2021. "Techno-economic assessment and smart management of an integrated fuel cell-based energy system with absorption chiller for power, hydrogen, heating, and cooling in an electrified railway network," Energy, Elsevier, vol. 233(C).
    7. Zhao, Huiru & Li, Bingkang & Lu, Hao & Wang, Xuejie & Li, Hongze & Guo, Sen & Xue, Wanlei & Wang, Yuwei, 2022. "Economy-environment-energy performance evaluation of CCHP microgrid system: A hybrid multi-criteria decision-making method," Energy, Elsevier, vol. 240(C).
    8. Mohammad Masfiqul Alam Bhuiyan & Ahmed Hammad, 2023. "A Hybrid Multi-Criteria Decision Support System for Selecting the Most Sustainable Structural Material for a Multistory Building Construction," Sustainability, MDPI, vol. 15(4), pages 1-36, February.
    9. Xie, Nan & Xiao, Zhenyu & Du, Wei & Deng, Chengwei & Liu, Zhiqiang & Yang, Sheng, 2023. "Thermodynamic and exergoeconomic analysis of a proton exchange membrane fuel cell/absorption chiller CCHP system based on biomass gasification," Energy, Elsevier, vol. 262(PB).
    10. Hui Liu & Zhenggang Fan & Haimin Xie & Ni Wang, 2022. "Distributionally Robust Joint Chance-Constrained Dispatch for Electricity–Gas–Heat Integrated Energy System Considering Wind Uncertainty," Energies, MDPI, vol. 15(5), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Mou & Yan, Rujing & Zhang, Jing & Fan, Junqiu & Wang, Jiangjiang & Bai, Zhang & He, Yu & Cao, Guoqiang & Hu, Keling, 2024. "An enhanced stochastic optimization for more flexibility on integrated energy system with flexible loads and a high penetration level of renewables," Renewable Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirikkaleli, Dervis, 2023. "Resource efficiency, energy productivity, and environmental quality in Japan," Resources Policy, Elsevier, vol. 85(PB).
    2. Song, Yuguang & Xia, Mingchao & Yang, Liu & Chen, Qifang & Su, Su, 2023. "Multi-granularity source-load-storage cooperative dispatch based on combined robust optimization and stochastic optimization for a highway service area micro-energy grid," Renewable Energy, Elsevier, vol. 205(C), pages 747-762.
    3. Nguyen, Hai-Tra & Safder, Usman & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2022. "Optimal demand side management scheduling-based bidirectional regulation of energy distribution network for multi-residential demand response with self-produced renewable energy," Applied Energy, Elsevier, vol. 322(C).
    4. Assareh, Ehsanolah & Mousavi Asl, Seyed Sajad & Agarwal, Neha & Ahmadinejad, Mehrdad & Ghodrat, Maryam & Lee, Moonyong, 2023. "New optimized configuration for a hybrid PVT solar/electrolyzer/absorption chiller system utilizing the response surface method as a machine learning technique and multi-objective optimization," Energy, Elsevier, vol. 281(C).
    5. Zuo, Yinhui & Sun, Yigao & Zhang, Luquan & Zhang, Chao & Wang, Yingchun & Jiang, Guangzheng & Wang, Xiaoguang & Zhang, Tao & Cui, Longqing, 2024. "Geothermal resource evaluation in the Sichuan Basin and suggestions for the development and utilization of abandoned oil and gas wells," Renewable Energy, Elsevier, vol. 225(C).
    6. Wang, Shengyan & Li, Bingkang & Zhao, Xudong & Hu, Qianchen & Liu, Da, 2024. "Assessing fossil energy supply security in China using ecological network analysis from a supply chain perspective," Energy, Elsevier, vol. 288(C).
    7. Lan, Jing & Wei, Yiming & Guo, Jie & Li, Qiuming & Liu, Zhen, 2023. "The effect of green finance on industrial pollution emissions: Evidence from China," Resources Policy, Elsevier, vol. 80(C).
    8. Ren, Xin-Yu & Li, Ling-Ling & Ji, Bing-Xiang & Liu, Jia-Qi, 2024. "Design and analysis of solar hybrid combined cooling, heating and power system: A bi-level optimization model," Energy, Elsevier, vol. 292(C).
    9. Arslan, Asli Ergenekon & Arslan, Oguz & Genc, Mustafa Serdar, 2024. "Hybrid modeling for the multi-criteria decision making of energy systems: An application for geothermal district heating system," Energy, Elsevier, vol. 286(C).
    10. Mohamad Shahiir Saidin & Lai Soon Lee & Siti Mahani Marjugi & Muhammad Zaini Ahmad & Hsin-Vonn Seow, 2023. "Fuzzy Method Based on the Removal Effects of Criteria (MEREC) for Determining Objective Weights in Multi-Criteria Decision-Making Problems," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    11. Rajabi Kouyakhi, Nima, 2023. "Exploring the interplay among energy dependence, CO2 emissions, and renewable resource utilization in developing nations: Empirical insights from Africa and the middle east using a quantile-on-quantil," Energy, Elsevier, vol. 283(C).
    12. Zou, Dexuan & Gong, Dunwei & Ouyang, Haibin, 2023. "A non-dominated sorting genetic approach using elite crossover for the combined cooling, heating, and power system with three energy storages," Applied Energy, Elsevier, vol. 329(C).
    13. Yuan, Yi & Ding, Tao & Chang, Xinyue & Jia, Wenhao & Xue, Yixun, 2024. "A distributed multi-objective optimization method for scheduling of integrated electricity and hydrogen systems," Applied Energy, Elsevier, vol. 355(C).
    14. Maria Symeonidou & Agis M. Papadopoulos, 2022. "Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.
    15. Adekoya, Oluwasegun B. & Akinbayo, Sukurat B. & Ishola, Oluwabunmi A. & Al-Faryan, Mamdouh Abdulaziz Saleh, 2023. "Are all the U.S. biomass energy sources green?," Energy Policy, Elsevier, vol. 179(C).
    16. AlZahrani, Abdullah A. & Dincer, Ibrahim, 2022. "Assessment of a thin-electrolyte solid oxide cell for hydrogen production," Energy, Elsevier, vol. 243(C).
    17. Gengli Song & Hua Wei, 2022. "Distributionally Robust Multi-Energy Dynamic Optimal Power Flow Considering Water Spillage with Wasserstein Metric," Energies, MDPI, vol. 15(11), pages 1-18, May.
    18. Ai, Tianchao & Chen, Hongwei & Zhong, Fanghao & Jia, Jiandong & Song, Yangfan, 2023. "Multi-objective optimization of a novel CCHP system with organic flash cycle based on different operating strategies," Energy, Elsevier, vol. 276(C).
    19. Hong Pan & Jie Yang & Yang Yu & Yuan Zheng & Xiaonan Zheng & Chenyang Hang, 2024. "Intelligent Low-Consumption Optimization Strategies: Economic Operation of Hydropower Stations Based on Improved LSTM and Random Forest Machine Learning Algorithm," Mathematics, MDPI, vol. 12(9), pages 1-20, April.
    20. Fan, Lixin & Tu, Zhengkai & Chan, Siew Hwa, 2022. "Technological and Engineering design of a megawatt proton exchange membrane fuel cell system," Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.