IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v257y2022ics0360544222014311.html
   My bibliography  Save this article

A novel negative carbon-emission, cooling, and power generation system based on combined LNG regasification and waste heat recovery: Energy, exergy, economic, environmental (4E) evaluations

Author

Listed:
  • Tian, Zhen
  • Qi, Zhixin
  • Gan, Wanlong
  • Tian, Molin
  • Gao, Wenzhong

Abstract

In this paper, a novel negative carbon-emission, cooling, and power generation (NCCP) system was proposed to improve the energy efficiency of the liquid natural gas (LNG)-powered hydrogen production plant. With LNG cold energy and waste heat recovery, the NCCP system integrated organic Rankine cycle (ORC) power generation, data center cooling, and CO2 capture. The NCCP system could operate under seven scenarios and the system performance evaluations were performed via energy, exergy, economic and environmental (4 E) analysis. It was found that the NCCP system showed the best performance when all subsystems were running simultaneously. The system could produce 31.67 MW of power, 24.92 MW of cooling capacity, and 29.97 t/h of CO2 capture. The levelized energy cost and the payback period of the NCCP system were 0.071 $/kWh and 7.9 years, respectively. LNG cold energy utilization efficiency, system energy efficiency, and exergy efficiency were 43.20%, 19.08%, and 29.28%, respectively. The environmental profits are validated with the negative carbon index of 29.47 t/h. Moreover, the effects of the LNG pressure, flue gas mass flow rate, and the temperature of the medium temperature shift gas on the NCCP system performances were investigated. The results show that the proposed system is a polygeneration system with the advantages of high efficiency, diversified energy output, fast return on investment, and CO2 capture. It is expected to be an energy conversion technology that could be used for reference in practical applications.

Suggested Citation

  • Tian, Zhen & Qi, Zhixin & Gan, Wanlong & Tian, Molin & Gao, Wenzhong, 2022. "A novel negative carbon-emission, cooling, and power generation system based on combined LNG regasification and waste heat recovery: Energy, exergy, economic, environmental (4E) evaluations," Energy, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:energy:v:257:y:2022:i:c:s0360544222014311
    DOI: 10.1016/j.energy.2022.124528
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222014311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124528?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhen Tian & Yingying Yue & Yuan Zhang & Bo Gu & Wenzhong Gao, 2020. "Multi-Objective Thermo-Economic Optimization of a Combined Organic Rankine Cycle (ORC) System Based on Waste Heat of Dual Fuel Marine Engine and LNG Cold Energy Recovery," Energies, MDPI, vol. 13(6), pages 1-23, March.
    2. Romero Gómez, Manuel & Romero Gómez, Javier & López-González, Luis M. & López-Ochoa, Luis M., 2016. "Thermodynamic analysis of a novel power plant with LNG (liquefied natural gas) cold exergy exploitation and CO2 capture," Energy, Elsevier, vol. 105(C), pages 32-44.
    3. He, Tianbiao & Lv, Hongyu & Shao, Zixian & Zhang, Jibao & Xing, Xialian & Ma, Huigang, 2020. "Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling," Applied Energy, Elsevier, vol. 277(C).
    4. Choi, In-Hwan & Lee, Sangick & Seo, Yutaek & Chang, Daejun, 2013. "Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 61(C), pages 179-195.
    5. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    6. Fang, Xiande & Chen, Yafeng & Zhang, Helei & Chen, Weiwei & Dong, Anqi & Wang, Run, 2016. "Heat transfer and critical heat flux of nanofluid boiling: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 924-940.
    7. Pal, D.B. & Chand, R. & Upadhyay, S.N. & Mishra, P.K., 2018. "Performance of water gas shift reaction catalysts: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 549-565.
    8. Park, Jinwoo & You, Fengqi & Cho, Hyungtae & Lee, Inkyu & Moon, Il, 2020. "Novel massive thermal energy storage system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 195(C).
    9. Zhao, Liang & Zhang, Jiulei & Wang, Xiu & Feng, Junsheng & Dong, Hui & Kong, Xiangwei, 2020. "Dynamic exergy analysis of a novel LNG cold energy utilization system combined with cold, heat and power," Energy, Elsevier, vol. 212(C).
    10. Xue, Xiaodi & Guo, Cong & Du, Xiaoze & Yang, Lijun & Yang, Yongping, 2015. "Thermodynamic analysis and optimization of a two-stage organic Rankine cycle for liquefied natural gas cryogenic exergy recovery," Energy, Elsevier, vol. 83(C), pages 778-787.
    11. Zhang, Ruihang & Wu, Chufan & Song, Wuwenjie & Deng, Chun & Yang, Minbo, 2020. "Energy integration of LNG light hydrocarbon recovery and air separation: Process design and technic-economic analysis," Energy, Elsevier, vol. 207(C).
    12. Kim, T.S & Ro, S.T, 2000. "Power augmentation of combined cycle power plants using cold energy of liquefied natural gas," Energy, Elsevier, vol. 25(9), pages 841-856.
    13. Le, Van Long & Kheiri, Abdelhamid & Feidt, Michel & Pelloux-Prayer, Sandrine, 2014. "Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid," Energy, Elsevier, vol. 78(C), pages 622-638.
    14. Zhao, Liang & Dong, Hui & Tang, Jiajun & Cai, Jiuju, 2016. "Cold energy utilization of liquefied natural gas for capturing carbon dioxide in the flue gas from the magnesite processing industry," Energy, Elsevier, vol. 105(C), pages 45-56.
    15. He, Tianbiao & Nair, Sajitha K. & Babu, Ponnivalavan & Linga, Praveen & Karimi, Iftekhar A., 2018. "A novel conceptual design of hydrate based desalination (HyDesal) process by utilizing LNG cold energy," Applied Energy, Elsevier, vol. 222(C), pages 13-24.
    16. Romero Gómez, M. & Ferreiro Garcia, R. & Romero Gómez, J. & Carbia Carril, J., 2014. "Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 781-795.
    17. Wu, Zhen & Zhu, Pengfei & Yao, Jing & Zhang, Shengan & Ren, Jianwei & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations," Applied Energy, Elsevier, vol. 279(C).
    18. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoeconomic and environmental assessments of a combined cycle for the small scale LNG cold utilization," Applied Energy, Elsevier, vol. 204(C), pages 1148-1162.
    19. Lee, Inkyu & You, Fengqi, 2019. "Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy," Applied Energy, Elsevier, vol. 242(C), pages 168-180.
    20. Liu, Yang & Han, Jitian & You, Huailiang, 2020. "Exergoeconomic analysis and multi-objective optimization of a CCHP system based on LNG cold energy utilization and flue gas waste heat recovery with CO2 capture," Energy, Elsevier, vol. 190(C).
    21. Sun, Zhixin & Lai, Jianpeng & Wang, Shujia & Wang, Tielong, 2018. "Thermodynamic optimization and comparative study of different ORC configurations utilizing the exergies of LNG and low grade heat of different temperatures," Energy, Elsevier, vol. 147(C), pages 688-700.
    22. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    23. Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.
    24. Mehrpooya, Mehdi & Moftakhari Sharifzadeh, Mohammad Mehdi & Rosen, Marc A., 2015. "Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization," Energy, Elsevier, vol. 90(P2), pages 2047-2069.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Zhen & Chen, Xiaochen & Zhang, Yuan & Gao, Wenzhong & Chen, Wu & Peng, Hao, 2023. "Energy, conventional exergy and advanced exergy analysis of cryogenic recuperative organic rankine cycle," Energy, Elsevier, vol. 268(C).
    2. Chen, Boyu & Che, Yanbo & Zheng, Zhihao & Zhao, Shuaijun, 2023. "Multi-objective robust optimal bidding strategy for a data center operator based on bi-level optimization," Energy, Elsevier, vol. 269(C).
    3. Ma, Hongqiang & Xie, Yue & Duan, Kerun & Song, Xingpeng & Ding, Ruixiang & Hou, Caiqin, 2022. "Dynamic control method of flue gas heat transfer system in the waste heat recovery process," Energy, Elsevier, vol. 259(C).
    4. Jiang, Jintao & Li, Chunxi & Kong, Mengdi & Ye, Xuemin, 2023. "Insights into 4E evaluation of a novel solar-assisted gas-fired decarburization power generation system with oxygen-enriched combustion," Energy, Elsevier, vol. 278(C).
    5. Aryanfar, Yashar & Mohtaram, Soheil & García Alcaraz, Jorge Luis & Sun, HongGuang, 2023. "Energy and exergy assessment and a competitive study of a two-stage ORC for recovering SFGC waste heat and LNG cold energy," Energy, Elsevier, vol. 264(C).
    6. Shakeri, Alireza & Asadbagi, Poorya & Babamiri Naamrudi, Arash, 2024. "Techno-economic, techno-environmental assessments, and deep learning optimization of an integrated system for CO2 capturing from a gas turbine: Tehran case study," Energy, Elsevier, vol. 306(C).
    7. Tian, Zhen & Zhou, Yihang & Zhang, Yuan & Gao, Wenzhong, 2024. "Design principle, 4E analyses and optimization for onboard CCS system under EEDI framework: A case study of an LNG-fueled bulk carrier," Energy, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    2. Fang, Zhenhua & Pan, Zhen & Ma, Guiyang & Yu, Jingxian & Shang, Liyan & Zhang, Zhien, 2023. "Exergoeconomic, exergoenvironmental analysis and multi-objective optimization of a novel combined cooling, heating and power system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 269(C).
    3. Zheng, Siyang & Li, Chenghao & Zeng, Zhiyong, 2022. "Thermo-economic analysis, working fluids selection, and cost projection of a precooler-integrated dual-stage combined cycle (PIDSCC) system utilizing cold exergy of liquefied natural gas," Energy, Elsevier, vol. 238(PC).
    4. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Huang, Z.F. & Wan, Y.D. & Soh, K.Y. & Islam, M.R. & Chua, K.J., 2022. "Off-design and flexibility analyses of combined cooling and power based liquified natural gas (LNG) cold energy utilization system under fluctuating regasification rates," Applied Energy, Elsevier, vol. 310(C).
    6. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
    7. Choi, Hong Wone & Na, Sun-Ik & Hong, Sung Bin & Chung, Yoong & Kim, Dong Kyu & Kim, Min Soo, 2021. "Optimal design of organic Rankine cycle recovering LNG cold energy with finite heat exchanger size," Energy, Elsevier, vol. 217(C).
    8. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    9. He, Tianbiao & Lv, Hongyu & Shao, Zixian & Zhang, Jibao & Xing, Xialian & Ma, Huigang, 2020. "Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling," Applied Energy, Elsevier, vol. 277(C).
    10. Huang, Z.F. & Soh, K.Y. & Wan, Y.D. & Islam, M.R. & Chua, K.J., 2022. "Assessment of an intermediate working medium and cold energy storage (IWM-CES) system for LNG cold energy utilization under real regasification case," Energy, Elsevier, vol. 253(C).
    11. Wu, Wencong & Xie, Shutao & Tan, Jiaqi & Ouyang, Tiancheng, 2022. "An integrated design of LNG cold energy recovery for supply demand balance using energy storage devices," Renewable Energy, Elsevier, vol. 183(C), pages 830-848.
    12. Zhang, Chengbin & Li, Deming & Mao, Changjun & Liu, Haiyang & Chen, Yongping, 2024. "Thermodynamic analysis of liquid air energy storage system integrating LNG cold energy," Energy, Elsevier, vol. 299(C).
    13. Han, Hui & Wang, Zihua & Wang, Cheng & Deng, Gonglin & Song, Chao & Jiang, Jie & Wang, Shaowei, 2019. "The study of a novel two-stage combined rankine cycle utilizing cold energy of liquefied natural gas," Energy, Elsevier, vol. 189(C).
    14. Park, Jinwoo & Cho, Seungsik & Qi, Meng & Noh, Wonjun & Lee, Inkyu & Moon, Il, 2021. "Liquid air energy storage coupled with liquefied natural gas cold energy: Focus on efficiency, energy capacity, and flexibility," Energy, Elsevier, vol. 216(C).
    15. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoeconomic assessment of a micro cogeneration system with LNG cold utilization," Energy, Elsevier, vol. 129(C), pages 171-184.
    16. Tang, Changlong & Hu, Fan & Zhou, Xiaoguang & Li, Yajun, 2022. "Optimization methods for flexibility and stability related to the operation of LNG receiving terminals," Energy, Elsevier, vol. 250(C).
    17. Sermsuk, Maytungkorn & Sukjai, Yanin & Wiboonrat, Montri & Kiatkittipong, Kunlanan, 2022. "Feasibility study of a combined system of electricity generation and cooling from liquefied natural gas to reduce the electricity cost of data centres," Energy, Elsevier, vol. 254(PA).
    18. Park, Jinwoo & Qi, Meng & Kim, Jeongdong & Noh, Wonjun & Lee, Inkyu & Moon, Il, 2020. "Exergoeconomic optimization of liquid air production by use of liquefied natural gas cold energy," Energy, Elsevier, vol. 207(C).
    19. Badami, Marco & Bruno, Juan Carlos & Coronas, Alberto & Fambri, Gabriele, 2018. "Analysis of different combined cycles and working fluids for LNG exergy recovery during regasification," Energy, Elsevier, vol. 159(C), pages 373-384.
    20. Riaz, Amjad & Qyyum, Muhammad Abdul & Min, Seongwoong & Lee, Sanggyu & Lee, Moonyong, 2021. "Performance improvement potential of harnessing LNG regasification for hydrogen liquefaction process: Energy and exergy perspectives," Applied Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:257:y:2022:i:c:s0360544222014311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.