IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v267y2023ics0360544222034284.html
   My bibliography  Save this article

Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters

Author

Listed:
  • Kamal, Md. Mustafa
  • Saini, R.P.

Abstract

A cross-flow HKT can be deployed in rivers and canals having a shallow depth of water to harness the kinetic energy from free stream water. Few studies have been carried out on the hybrid HKT having a straight-bladed Savonius rotor in order to enhance the performance of the rotor. However, there is a scope to investigate the effect of radius ratio, attachment angle and water flow velocity on the average power coefficient of a hybrid HKT having a helical-bladed Savonius rotor. Under the present study, the effect of radius ratio, attachment angle and water flow velocity has been analysed numerically on a configuration of a hybrid HKT comprised of three Darrieus rotor blades and two Savonius helical blades. The simulations on different configurations of the hybrid HKT are performed using ANSYS v15. It is observed that the radius ratio and attachment angle significantly affect the energy harnessing capability (average power coefficient) of the hybrid HKT. The optimum radius ratio and attachment angle values for the best-configured hybrid HKT are 0.4 and 90°, respectively. The maximum average power coefficient of the hybrid HKT model with a radius ratio of 0.4 is enhanced by 46.2%, 27.6% and 5.2% compared to models with a radius ratio of 0.2, 0.8 and 0.6, respectively. The hybrid HKT with an attachment angle of 90° is found 4.3% and 4.8%, more efficient than the hybrid configurations with attachment angles of 30° and 150°, respectively. It has been observed that the hybrid HKT is found to have better efficient for low values of water flow velocity. Further, a significant effect of the Savonius blade profile is also found on the performance of the hybrid hydrokinetic turbine rotor.

Suggested Citation

  • Kamal, Md. Mustafa & Saini, R.P., 2023. "Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters," Energy, Elsevier, vol. 267(C).
  • Handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034284
    DOI: 10.1016/j.energy.2022.126541
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222034284
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    2. Mahdy, Ahmed & Hasanien, Hany M. & Helmy, Waleed & Turky, Rania A. & Abdel Aleem, Shady H.E., 2022. "Transient stability improvement of wave energy conversion systems connected to power grid using anti-windup-coot optimization strategy," Energy, Elsevier, vol. 245(C).
    3. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    4. Liang, Xiaoting & Fu, Sauchung & Ou, Baoxing & Wu, Chili & Chao, Christopher Y.H. & Pi, Kaihong, 2017. "A computational study of the effects of the radius ratio and attachment angle on the performance of a Darrieus-Savonius combined wind turbine," Renewable Energy, Elsevier, vol. 113(C), pages 329-334.
    5. McTavish, S. & Feszty, D. & Sankar, T., 2012. "Steady and rotating computational fluid dynamics simulations of a novel vertical axis wind turbine for small-scale power generation," Renewable Energy, Elsevier, vol. 41(C), pages 171-179.
    6. Kusakana, Kanzumba & Vermaak, Herman Jacobus, 2013. "Hydrokinetic power generation for rural electricity supply: Case of South Africa," Renewable Energy, Elsevier, vol. 55(C), pages 467-473.
    7. Howell, Robert & Qin, Ning & Edwards, Jonathan & Durrani, Naveed, 2010. "Wind tunnel and numerical study of a small vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(2), pages 412-422.
    8. Balduzzi, Francesco & Bianchini, Alessandro & Maleci, Riccardo & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Critical issues in the CFD simulation of Darrieus wind turbines," Renewable Energy, Elsevier, vol. 85(C), pages 419-435.
    9. Zhao, Jun & Dong, Kangyin & Dong, Xiucheng & Shahbaz, Muhammad, 2022. "How renewable energy alleviate energy poverty? A global analysis," Renewable Energy, Elsevier, vol. 186(C), pages 299-311.
    10. Zouzou, B. & Dobrev, I. & Massouh, F. & Dizene, R., 2019. "Experimental and numerical analysis of a novel Darrieus rotor with variable pitch mechanism at low TSR," Energy, Elsevier, vol. 186(C).
    11. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 113(C), pages 461-478.
    12. Nauman Riyaz Maldar & Cheng Yee Ng & Lee Woen Ean & Elif Oguz & Ahmad Fitriadhy & Hooi Siang Kang, 2020. "A Comparative Study on the Performance of a Horizontal Axis Ocean Current Turbine Considering Deflector and Operating Depths," Sustainability, MDPI, vol. 12(8), pages 1-22, April.
    13. Kamal, Md. Mustafa & Saini, R.P., 2022. "A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine," Renewable Energy, Elsevier, vol. 190(C), pages 788-804.
    14. Mohamed, M.H., 2012. "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes," Energy, Elsevier, vol. 47(1), pages 522-530.
    15. Balduzzi, Francesco & Drofelnik, Jernej & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo & Campobasso, Michele Sergio, 2017. "Darrieus wind turbine blade unsteady aerodynamics: a three-dimensional Navier-Stokes CFD assessment," Energy, Elsevier, vol. 128(C), pages 550-563.
    16. Khan, M.J. & Iqbal, M.T. & Quaicoe, J.E., 2008. "River current energy conversion systems: Progress, prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2177-2193, October.
    17. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    18. Zamani, Mahdi & Maghrebi, Mohammad Javad & Varedi, Seyed Rasoul, 2016. "Starting torque improvement using J-shaped straight-bladed Darrieus vertical axis wind turbine by means of numerical simulation," Renewable Energy, Elsevier, vol. 95(C), pages 109-126.
    19. Guerra, Maricarmen & Thomson, Jim, 2019. "Wake measurements from a hydrokinetic river turbine," Renewable Energy, Elsevier, vol. 139(C), pages 483-495.
    20. Niebuhr, C.M. & van Dijk, M. & Neary, V.S. & Bhagwan, J.N., 2019. "A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    21. Jeon, Keum Soo & Jeong, Jun Ik & Pan, Jae-Kyung & Ryu, Ki-Wahn, 2015. "Effects of end plates with various shapes and sizes on helical Savonius wind turbines," Renewable Energy, Elsevier, vol. 79(C), pages 167-176.
    22. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    23. Kumar, Dinesh & Sarkar, Shibayan, 2016. "A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 796-813.
    24. Miller, Veronica B. & Ramde, Emmanuel W. & Gradoville, Robert T. & Schaefer, Laura A., 2011. "Hydrokinetic power for energy access in rural Ghana," Renewable Energy, Elsevier, vol. 36(2), pages 671-675.
    25. Lee, Jae-Hoon & Lee, Young-Tae & Lim, Hee-Chang, 2016. "Effect of twist angle on the performance of Savonius wind turbine," Renewable Energy, Elsevier, vol. 89(C), pages 231-244.
    26. Tian, Wenlong & VanZwieten, James H. & Pyakurel, Parakram & Li, Yanjun, 2016. "Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine," Energy, Elsevier, vol. 111(C), pages 104-116.
    27. Saha, U.K. & Rajkumar, M. Jaya, 2006. "On the performance analysis of Savonius rotor with twisted blades," Renewable Energy, Elsevier, vol. 31(11), pages 1776-1788.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Effect of number of blades on performance and wake recovery for a vertical axis helical hydrokinetic turbine," Energy, Elsevier, vol. 299(C).
    2. Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Influence of aspect ratio on the performance and wake recovery of lift-type helical hydrokinetic turbine," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamal, Md. Mustafa & Saini, R.P., 2022. "A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine," Renewable Energy, Elsevier, vol. 190(C), pages 788-804.
    2. Zhang, Yongchao & Kang, Can & Ji, Yanguang & Li, Qing, 2019. "Experimental and numerical investigation of flow patterns and performance of a modified Savonius hydrokinetic rotor," Renewable Energy, Elsevier, vol. 141(C), pages 1067-1079.
    3. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    4. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    5. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    6. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    7. Hashem, Islam & Zhu, Baoshan, 2021. "Metamodeling-based parametric optimization of a bio-inspired Savonius-type hydrokinetic turbine," Renewable Energy, Elsevier, vol. 180(C), pages 560-576.
    8. Victor Mendoza & Eirini Katsidoniotaki & Hans Bernhoff, 2020. "Numerical Study of a Novel Concept for Manufacturing Savonius Turbines with Twisted Blades," Energies, MDPI, vol. 13(8), pages 1-16, April.
    9. John, Bony & Thomas, Rony N. & Varghese, James, 2020. "Integration of hydrokinetic turbine-PV-battery standalone system for tropical climate condition," Renewable Energy, Elsevier, vol. 149(C), pages 361-373.
    10. Khani, Mohammad Sadegh & Shahsavani, Younes & Mehraein, Mojtaba & Soleimani Rad, Mohammad Hossein & Nikbakhsh, Amir Abbas, 2024. "Evaluation of the performance of the Savonius hydrokinetic turbines in the straight and curved channels using advanced machine learning methods," Energy, Elsevier, vol. 290(C).
    11. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    12. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    13. Noman, Abdullah Al & Tasneem, Zinat & Sahed, Md. Fahad & Muyeen, S.M. & Das, Sajal K. & Alam, Firoz, 2022. "Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Mosbahi, Mabrouk & Ayadi, Ahmed & Chouaibi, Youssef & Driss, Zied & Tucciarelli, Tullio, 2020. "Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine," Renewable Energy, Elsevier, vol. 162(C), pages 1087-1103.
    15. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 113(C), pages 461-478.
    16. Zitti, Gianluca & Fattore, Fernando & Brunori, Alessandro & Brunori, Bruno & Brocchini, Maurizio, 2020. "Efficiency evaluation of a ductless Archimedes turbine: Laboratory experiments and numerical simulations," Renewable Energy, Elsevier, vol. 146(C), pages 867-879.
    17. Kumar, Rakesh & Sarkar, Shibayan, 2022. "Effect of design parameters on the performance of helical Darrieus hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Can Kang & Wisdom Opare & Chen Pan & Ziwen Zou, 2018. "Upstream Flow Control for the Savonius Rotor under Various Operation Conditions," Energies, MDPI, vol. 11(6), pages 1-20, June.
    19. Zhu, Haitian & Hao, Wenxing & Li, Chun & Ding, Qinwei & Wu, Baihui, 2018. "A critical study on passive flow control techniques for straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 165(PA), pages 12-25.
    20. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.