IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp867-879.html
   My bibliography  Save this article

Efficiency evaluation of a ductless Archimedes turbine: Laboratory experiments and numerical simulations

Author

Listed:
  • Zitti, Gianluca
  • Fattore, Fernando
  • Brunori, Alessandro
  • Brunori, Bruno
  • Brocchini, Maurizio

Abstract

The aim of designing a new hydrokinetic turbine simple, cheap, environmentally friendly and suitable for installation in remote areas is pursued by studying the efficiency of an Archimedes turbine that exploits the kinetic energy of a water stream rather than an upstream-downstream difference in water head. First, the efficiency of a hydrokinetic Archimedes turbine has been studied using laboratory experiments for low TSR regimes. Subsequently, numerical simulations have been run to evaluate the performance coefficient of the turbine only (without frictional losses or blockage augmentation), and to extend the TSR range. Numerical simulations have allowed to produce the efficiency curve of the hydrokinetic Archimedes turbine in both aligned and inclined configurations. The obtained maximum performance coefficients have been compared with those of other hydrokinetic turbines currently in use and inspected through a parametric analysis dedicated to explore the practical applications of the proposed turbine.

Suggested Citation

  • Zitti, Gianluca & Fattore, Fernando & Brunori, Alessandro & Brunori, Bruno & Brocchini, Maurizio, 2020. "Efficiency evaluation of a ductless Archimedes turbine: Laboratory experiments and numerical simulations," Renewable Energy, Elsevier, vol. 146(C), pages 867-879.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:867-879
    DOI: 10.1016/j.renene.2019.06.174
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119310146
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    2. Kusakana, Kanzumba & Vermaak, Herman Jacobus, 2013. "Hydrokinetic power generation for rural electricity supply: Case of South Africa," Renewable Energy, Elsevier, vol. 55(C), pages 467-473.
    3. Price, Trevor & Probert, Douglas, 1997. "Harnessing hydropower: A practical guide," Applied Energy, Elsevier, vol. 57(2-3), pages 175-251, June.
    4. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 113(C), pages 461-478.
    5. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    6. Talukdar, Parag K. & Kulkarni, Vinayak & Saha, Ujjwal K., 2018. "Field-testing of model helical-bladed hydrokinetic turbines for small-scale power generation," Renewable Energy, Elsevier, vol. 127(C), pages 158-167.
    7. Golecha, Kailash & Eldho, T.I. & Prabhu, S.V., 2011. "Influence of the deflector plate on the performance of modified Savonius water turbine," Applied Energy, Elsevier, vol. 88(9), pages 3207-3217.
    8. Hao, Yue & Tan, Lei, 2018. "Symmetrical and unsymmetrical tip clearances on cavitation performance and radial force of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 127(C), pages 368-376.
    9. Guney, Mukrimin Sevket, 2011. "Evaluation and measures to increase performance coefficient of hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3669-3675.
    10. Liu, Yabin & Tan, Lei, 2018. "Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 129(PA), pages 606-615.
    11. Rostami, Ali Bakhshandeh & Armandei, Mohammadmehdi, 2017. "Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 193-214.
    12. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    13. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    14. Khan, M.J. & Iqbal, M.T. & Quaicoe, J.E., 2008. "River current energy conversion systems: Progress, prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2177-2193, October.
    15. Beran, V. & Sedláček, M. & Marˇs´ık, F., 2013. "A new bladeless hydraulic turbine," Applied Energy, Elsevier, vol. 104(C), pages 978-983.
    16. Fernandes, Antonio Carlos & Bakhshandeh Rostami, Ali, 2015. "Hydrokinetic energy harvesting by an innovative vertical axis current turbine," Renewable Energy, Elsevier, vol. 81(C), pages 694-706.
    17. Schleicher, W.C. & Riglin, J.D. & Oztekin, A., 2015. "Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design," Renewable Energy, Elsevier, vol. 76(C), pages 234-241.
    18. Okot, David Kilama, 2013. "Review of small hydropower technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 515-520.
    19. Kumar, Dinesh & Sarkar, Shibayan, 2016. "A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 796-813.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamal, Ahmed M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Archimedes Spiral Wind Turbine performance study using different aerofoiled blade profiles: Experimental and numerical analyses," Energy, Elsevier, vol. 262(PB).
    2. Dylan Sheneth Edirisinghe & Ho-Seong Yang & Min-Sung Kim & Byung-Ha Kim & Sudath Prasanna Gunawardane & Young-Ho Lee, 2021. "Computational Flow Analysis on a Real Scale Run-of-River Archimedes Screw Turbine with a High Incline Angle," Energies, MDPI, vol. 14(11), pages 1-18, June.
    3. Wiroon Monatrakul & Kritsadang Senawong & Piyawat Sritram & Ratchaphon Suntivarakorn, 2023. "A Comparison Study of Hydro-Compact Generators with Horizontal Spiral Turbines (HSTs) and a Three-Blade Turbine Used in Irrigation Canals," Energies, MDPI, vol. 16(5), pages 1-15, February.
    4. Kamal, Ahmed M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2022. "Blade design effect on Archimedes Spiral Wind Turbine performance: Experimental and numerical evaluations," Energy, Elsevier, vol. 250(C).
    5. Bouvant, Maël & Betancour, Johan & Velásquez, Laura & Rubio-Clemente, Ainhoa & Chica, Edwin, 2021. "Design optimization of an Archimedes screw turbine for hydrokinetic applications using the response surface methodology," Renewable Energy, Elsevier, vol. 172(C), pages 941-954.
    6. Nawar, Mohamed A.A. & Hameed, H.S. Abdel & Ramadan, A. & Attai, Youssef A. & Mohamed, M.H., 2021. "Experimental and numerical investigations of the blade design effect on Archimedes Spiral Wind Turbine performance," Energy, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yongchao & Kang, Can & Ji, Yanguang & Li, Qing, 2019. "Experimental and numerical investigation of flow patterns and performance of a modified Savonius hydrokinetic rotor," Renewable Energy, Elsevier, vol. 141(C), pages 1067-1079.
    2. John, Bony & Thomas, Rony N. & Varghese, James, 2020. "Integration of hydrokinetic turbine-PV-battery standalone system for tropical climate condition," Renewable Energy, Elsevier, vol. 149(C), pages 361-373.
    3. Mosbahi, Mabrouk & Ayadi, Ahmed & Chouaibi, Youssef & Driss, Zied & Tucciarelli, Tullio, 2020. "Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine," Renewable Energy, Elsevier, vol. 162(C), pages 1087-1103.
    4. Khani, Mohammad Sadegh & Shahsavani, Younes & Mehraein, Mojtaba & Soleimani Rad, Mohammad Hossein & Nikbakhsh, Amir Abbas, 2024. "Evaluation of the performance of the Savonius hydrokinetic turbines in the straight and curved channels using advanced machine learning methods," Energy, Elsevier, vol. 290(C).
    5. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    6. Kuo-Tsai Wu & Kuo-Hao Lo & Ruey-Chy Kao & Sheng-Jye Hwang, 2022. "Numerical and Experimental Investigation of the Effect of Design Parameters on Savonius-Type Hydrokinetic Turbine Performance," Energies, MDPI, vol. 15(5), pages 1-19, March.
    7. Kamal, Md. Mustafa & Saini, R.P., 2023. "Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters," Energy, Elsevier, vol. 267(C).
    8. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    9. Kamal, Md. Mustafa & Saini, R.P., 2022. "A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine," Renewable Energy, Elsevier, vol. 190(C), pages 788-804.
    10. Kumar, Dinesh & Sarkar, Shibayan, 2016. "A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 796-813.
    11. John, Bony & Varghese, James, 2021. "Sizing and techno-economic analysis of hydrokinetic turbine based standalone hybrid energy systems," Energy, Elsevier, vol. 221(C).
    12. Montoya Ramírez, Rubén D. & Cuervo, Felipe Isaza & Monsalve Rico, César Antonio, 2016. "Technical and financial valuation of hydrokinetic power in the discharge channels of large hydropower plants in Colombia: A case study," Renewable Energy, Elsevier, vol. 99(C), pages 136-147.
    13. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    14. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    15. Faruk Guner & Hilmi Zenk, 2020. "Experimental, Numerical and Application Analysis of Hydrokinetic Turbine Performance with Fixed Rotating Blades," Energies, MDPI, vol. 13(3), pages 1-15, February.
    16. Sarma, Kanak Chandra & Biswas, Agnimitra & Misra, Rahul Dev, 2022. "Experimental investigation of a two-bladed double stage Savonius-akin hydrokinetic turbine at low flow velocity conditions," Renewable Energy, Elsevier, vol. 187(C), pages 958-973.
    17. Hashem, Islam & Zhu, Baoshan, 2021. "Metamodeling-based parametric optimization of a bio-inspired Savonius-type hydrokinetic turbine," Renewable Energy, Elsevier, vol. 180(C), pages 560-576.
    18. Jadidi, P. & Zeinoddini, M., 2020. "Influence of hard marine fouling on energy harvesting from Vortex-Induced Vibrations of a single-cylinder," Renewable Energy, Elsevier, vol. 152(C), pages 516-528.
    19. K. Y. Lau & C. W. Tan, 2021. "Performance analysis of photovoltaic, hydrokinetic, and hybrid diesel systems for rural electrification in Malaysian Borneo," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6279-6300, April.
    20. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:867-879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.