IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics036054422303390x.html
   My bibliography  Save this article

Influence of aspect ratio on the performance and wake recovery of lift-type helical hydrokinetic turbine

Author

Listed:
  • Reddy, K. Bheemalingeswara
  • Bhosale, Amit C.

Abstract

The lift-type helical hydrokinetic turbine (LHHT) owns combined capabilities of low torque pulsations and high rotating speed, stimulating the researchers' attention towards power output enhancement compared to other cross-flow turbines. The blade tip vortex plays a key role in diminishing the performance; however, it can be countered by lengthening the rotor's blades. In this context, the numerical simulations are performed on the 3D-CFD LHHT model to investigate the influence of aspect ratio considered in the range of 0.75–1.75 on the performance at different tip speed ratios and water velocities. Besides, wake recovery analysis is carried out by measuring velocity deficit at various downstream locations of the rotor under constant 1.0 m/s velocity. The aspect ratio is seen to have a strong influence on power coefficient, torque pulsations and wake recovery as well. The simulation results show that the peak power coefficient is proportional to the aspect ratio and reached a value of 0.228 for 1.75 aspect ratio model, which is 32.5 % superior to the 0.75 model. It is noticed that for an aspect ratio ≥ 1.25, the water velocity recovers 100 % at a distance of 21 times the rotor diameter along the channel where the second machine would be installed.

Suggested Citation

  • Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Influence of aspect ratio on the performance and wake recovery of lift-type helical hydrokinetic turbine," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s036054422303390x
    DOI: 10.1016/j.energy.2023.129996
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422303390X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zanforlin, Stefania & Deluca, Stefano, 2018. "Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines," Energy, Elsevier, vol. 148(C), pages 179-195.
    2. Kang, Can & Wang, Zhiyuan & Kim, Hyoung-Bum & Shao, Chunbing, 2023. "Effects of solidity on startup performance and flow characteristics of a vertical-axis hydrokinetic rotor with three helical blades," Renewable Energy, Elsevier, vol. 218(C).
    3. Sarlak, H. & Nishino, T. & Martínez-Tossas, L.A. & Meneveau, C. & Sørensen, J.N., 2016. "Assessment of blockage effects on the wake characteristics and power of wind turbines," Renewable Energy, Elsevier, vol. 93(C), pages 340-352.
    4. Kamal, Md. Mustafa & Saini, R.P., 2022. "A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine," Renewable Energy, Elsevier, vol. 190(C), pages 788-804.
    5. Marsh, Philip & Ranmuthugala, Dev & Penesis, Irene & Thomas, Giles, 2015. "Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines," Renewable Energy, Elsevier, vol. 81(C), pages 926-935.
    6. Ouro, Pablo & Runge, Stefan & Luo, Qianyu & Stoesser, Thorsten, 2019. "Three-dimensionality of the wake recovery behind a vertical axis turbine," Renewable Energy, Elsevier, vol. 133(C), pages 1066-1077.
    7. Dar, Javaid & Asif, Mohammad, 2023. "Environmental feasibility of a gradual shift from fossil fuels to renewable energy in India: Evidence from multiple structural breaks cointegration," Renewable Energy, Elsevier, vol. 202(C), pages 589-601.
    8. Talukdar, Parag K. & Kulkarni, Vinayak & Saha, Ujjwal K., 2018. "Field-testing of model helical-bladed hydrokinetic turbines for small-scale power generation," Renewable Energy, Elsevier, vol. 127(C), pages 158-167.
    9. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2017. "Effect of rotor aspect ratio and solidity on a straight-bladed vertical axis wind turbine in three-dimensional analysis by the panel method," Energy, Elsevier, vol. 121(C), pages 1-9.
    10. Ma, Yong & Zhu, Yuanyao & Zhang, Aiming & Hu, Chao & Liu, Sen & Li, Zhengyu, 2022. "Hydrodynamic performance of vertical axis hydrokinetic turbine based on Taguchi method," Renewable Energy, Elsevier, vol. 186(C), pages 573-584.
    11. Bachant, Peter & Wosnik, Martin, 2015. "Performance measurements of cylindrical- and spherical-helical cross-flow marine hydrokinetic turbines, with estimates of exergy efficiency," Renewable Energy, Elsevier, vol. 74(C), pages 318-325.
    12. Kamal, Md. Mustafa & Saini, R.P., 2023. "Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters," Energy, Elsevier, vol. 267(C).
    13. Mosbahi, Mabrouk & Ayadi, Ahmed & Chouaibi, Youssef & Driss, Zied & Tucciarelli, Tullio, 2020. "Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine," Renewable Energy, Elsevier, vol. 162(C), pages 1087-1103.
    14. El Fajri, Oumnia & Bowman, Joshua & Bhushan, Shanti & Thompson, David & O'Doherty, Tim, 2022. "Numerical study of the effect of tip-speed ratio on hydrokinetic turbine wake recovery," Renewable Energy, Elsevier, vol. 182(C), pages 725-750.
    15. Kumar, Rakesh & Sarkar, Shibayan, 2022. "Effect of design parameters on the performance of helical Darrieus hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    16. Kirke, B.K., 2011. "Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines," Renewable Energy, Elsevier, vol. 36(11), pages 3013-3022.
    17. Zhang, Aiming & Liu, Sen & Ma, Yong & Hu, Chao & Li, Zhengyu, 2022. "Field tests on model efficiency of twin vertical axis helical hydrokinetic turbines," Energy, Elsevier, vol. 247(C).
    18. Peng, H.Y. & Lam, H.F. & Liu, H.J., 2019. "Power performance assessment of H-rotor vertical axis wind turbines with different aspect ratios in turbulent flows via experiments," Energy, Elsevier, vol. 173(C), pages 121-132.
    19. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    20. Aghsaee, Payam & Markfort, Corey D., 2018. "Effects of flow depth variations on the wake recovery behind a horizontal-axis hydrokinetic in-stream turbine," Renewable Energy, Elsevier, vol. 125(C), pages 620-629.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mosbahi, Mabrouk & Ayadi, Ahmed & Chouaibi, Youssef & Driss, Zied & Tucciarelli, Tullio, 2020. "Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine," Renewable Energy, Elsevier, vol. 162(C), pages 1087-1103.
    2. Kumar, Rakesh & Sarkar, Shibayan, 2022. "Effect of design parameters on the performance of helical Darrieus hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Zhang, Aiming & Liu, Sen & Ma, Yong & Hu, Chao & Li, Zhengyu, 2022. "Field tests on model efficiency of twin vertical axis helical hydrokinetic turbines," Energy, Elsevier, vol. 247(C).
    4. Ma, Yong & Zhu, Yuanyao & Zhang, Aiming & Hu, Chao & Liu, Sen & Li, Zhengyu, 2022. "Hydrodynamic performance of vertical axis hydrokinetic turbine based on Taguchi method," Renewable Energy, Elsevier, vol. 186(C), pages 573-584.
    5. Singh, Enderaaj & Roy, Sukanta & Yam, Ke San & Law, Ming Chiat, 2023. "Numerical analysis of H-Darrieus vertical axis wind turbines with varying aspect ratios for exhaust energy extractions," Energy, Elsevier, vol. 277(C).
    6. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    7. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Derya Karakaya & Aslı Bor & Sebnem Elçi, 2024. "Numerical Analysis of Three Vertical Axis Turbine Designs for Improved Water Energy Efficiency," Energies, MDPI, vol. 17(6), pages 1-24, March.
    9. Guanghao Li & Guoying Wu & Lei Tan & Honggang Fan, 2023. "A Review: Design and Optimization Approaches of the Darrieus Water Turbine," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    10. Gao, Jinjin & Liu, Han & Lee, Jiyong & Zheng, Yuan & Guala, Michele & Shen, Lian, 2022. "Large-eddy simulation and Co-Design strategy for a drag-type vertical axis hydrokinetic turbine in open channel flows," Renewable Energy, Elsevier, vol. 181(C), pages 1305-1316.
    11. Talukdar, Parag K. & Kulkarni, Vinayak & Saha, Ujjwal K., 2018. "Field-testing of model helical-bladed hydrokinetic turbines for small-scale power generation," Renewable Energy, Elsevier, vol. 127(C), pages 158-167.
    12. Unnikrishnan Divakaran & Ajith Ramesh & Akram Mohammad & Ratna Kishore Velamati, 2021. "Effect of Helix Angle on the Performance of Helical Vertical Axis Wind Turbine," Energies, MDPI, vol. 14(2), pages 1-24, January.
    13. Kamal, Md. Mustafa & Saini, R.P., 2023. "Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters," Energy, Elsevier, vol. 267(C).
    14. Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhao, Yongsheng, 2020. "Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines," Applied Energy, Elsevier, vol. 260(C).
    15. Kamal, Md. Mustafa & Saini, R.P., 2022. "A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine," Renewable Energy, Elsevier, vol. 190(C), pages 788-804.
    16. Marsh, Philip & Ranmuthugala, Dev & Penesis, Irene & Thomas, Giles, 2015. "Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines," Renewable Energy, Elsevier, vol. 81(C), pages 926-935.
    17. Marsh, Philip & Ranmuthugala, Dev & Penesis, Irene & Thomas, Giles, 2017. "The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines," Renewable Energy, Elsevier, vol. 105(C), pages 106-116.
    18. Tong, Guoqiang & Yang, Shengbing & Li, Yan & Feng, Fang, 2023. "Effects of blade tip flow on aerodynamic characteristics of straight-bladed vertical axis wind turbines," Energy, Elsevier, vol. 283(C).
    19. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    20. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s036054422303390x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.