IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipds0360544222028407.html
   My bibliography  Save this article

Investigation of process stream systems for targeting energy-capital trade-offs of a heat recovery network

Author

Listed:
  • Ulyev, Leonid
  • Boldyryev, Stanislav
  • Kuznetsov, Maxim

Abstract

The process industries consume a huge amount of heat energy contributing to environmental impact. Energy recovery is a key instrument of energy-saving that can be implemented via a heat exchanger network. Pinch-based approaches presume analysis of energy targets of industrial processes to find the optimal ΔTmin for heat exchanger network design. Classical Pinch Analysis do not account for the stream splitting in the super targeting procedure while parallel branches are usually needed. The splitters and mixers contribute a lot to the capital cost of the heat exchanger network. Current work proposes the update of super targeting procedure accounting stream splitting and mixing in a Pinch problem. The original algorithm of Composite Curves construction is proposed to analyse the distribution of process streams and stream splitting in subsystems above/below the Pinch before the design of the heat exchanger network. It was then used in a super targeting procedure to precise the capital cost and, as a result, the optimal ΔTmin. The process stream distribution and stream splitting are analysed in a whole range of ΔTmin. Identifying all possible starting points for heat exchanger network design. Two new criteria were proposed to estimate the topological complexity of network pre-design and the specific ratio of stream splitting. The case study analyses the ethylene oxide process and calculation of trade-off between capital and energy costs were performed and optimal ΔTmin = 16 °C. The result was compared with two known approaches, which account for the number of heat exchangers without stream splitting. Total annual costs and optimal ΔTmin was also calculated for different energy prices to show a possible deviation of starting point for heat exchanger network design. The range of optimal ΔTmin from 9 to 54 °C resulted in the range of hot utility prices from 42 to 291 $/kWy, and the emission targets will be from 14,380 to 77,919 tCO2/y. The methodology can be used for the pre-design of the heat exchanger network to better precise the optimal ΔTmin, capital cost targets, and check the optimum changing for different energy prices.

Suggested Citation

  • Ulyev, Leonid & Boldyryev, Stanislav & Kuznetsov, Maxim, 2023. "Investigation of process stream systems for targeting energy-capital trade-offs of a heat recovery network," Energy, Elsevier, vol. 263(PD).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222028407
    DOI: 10.1016/j.energy.2022.125954
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222028407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125954?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kayange, Heri Ambonisye & Cui, Guomin & Xu, Yue & Li, Jian & Xiao, Yuan, 2020. "Non-structural model for heat exchanger network synthesis allowing for stream splitting," Energy, Elsevier, vol. 201(C).
    2. Lai, Yee Qing & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul, 2020. "Graphical customisation of process and utility changes for heat exchanger network retrofit using individual stream temperature versus enthalpy plot," Energy, Elsevier, vol. 203(C).
    3. Liu, Linlin & Li, Chenying & Gu, Siwen & Zhang, Lei & Du, Jian, 2020. "Optimization-based framework for the synthesis of heat exchanger networks incorporating controllability," Energy, Elsevier, vol. 208(C).
    4. Hafizan, Ainur Munirah & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abd & Klemeš, Jiří Jaromír & Abd Hamid, Mohd Kamaruddin, 2020. "Design of optimal heat exchanger network with fluctuation probability using break-even analysis," Energy, Elsevier, vol. 212(C).
    5. Boldyryev, Stanislav & Shamraev, Anatoly A. & Shamraeva, Elena O., 2021. "The design of the total site exchanger network with intermediate heat carriers: Theoretical insights and practical application," Energy, Elsevier, vol. 223(C).
    6. Daniel Leitold & Agnes Vathy-Fogarassy & Janos Abonyi, 2019. "Evaluation of the Complexity, Controllability and Observability of Heat Exchanger Networks Based on Structural Analysis of Network Representations," Energies, MDPI, vol. 12(3), pages 1-23, February.
    7. Bakar, Suraya Hanim Abu & Hamid, Mohd. Kamaruddin Abd. & Alwi, Sharifah Rafidah Wan & Manan, Zainuddin Abdul, 2016. "Selection of minimum temperature difference (ΔTmin) for heat exchanger network synthesis based on trade-off plot," Applied Energy, Elsevier, vol. 162(C), pages 1259-1271.
    8. Wang, Bohong & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Chin, Hon Huin & Wang, Qiu-Wang & Zeng, Min, 2020. "Heat exchanger network retrofit by a shifted retrofit thermodynamic grid diagram-based model and a two-stage approach," Energy, Elsevier, vol. 198(C).
    9. Wang, Bohong & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Zeng, Min & Liang, Yongtu, 2021. "Heat Exchanger Network synthesis considering prohibited and restricted matches," Energy, Elsevier, vol. 225(C).
    10. Aguitoni, Maria Claudia & Pavão, Leandro Vitor & Antonio da Silva Sá Ravagnani, Mauro, 2019. "Heat exchanger network synthesis combining Simulated Annealing and Differential Evolution," Energy, Elsevier, vol. 181(C), pages 654-664.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Liwen & Liu, Guilian, 2024. "A comprehensive framework for targeting the disturbance propagation path and debottleneck strategy of chemical process considering the topology and cascading effects," Energy, Elsevier, vol. 301(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bohong & Klemeš, Jiří Jaromír & Li, Nianqi & Zeng, Min & Varbanov, Petar Sabev & Liang, Yongtu, 2021. "Heat exchanger network retrofit with heat exchanger and material type selection: A review and a novel method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
    3. Boldyryev, Stanislav & Gil, Tatyana & Ilchenko, Mariia, 2022. "Environmental and economic assessment of the efficiency of heat exchanger network retrofit options based on the experience of society and energy price records," Energy, Elsevier, vol. 260(C).
    4. Dong, Zhe & Li, Bowen & Li, Junyi & Jiang, Di & Guo, Zhiwu & Huang, Xiaojin & Zhang, Zuoyi, 2021. "Passivity based control of heat exchanger networks with application to nuclear heating," Energy, Elsevier, vol. 223(C).
    5. Sofie Marton & Elin Svensson & Simon Harvey, 2020. "Operability and Technical Implementation Issues Related to Heat Integration Measures—Interview Study at an Oil Refinery in Sweden," Energies, MDPI, vol. 13(13), pages 1-23, July.
    6. Zirngast, Klavdija & Kravanja, Zdravko & Novak Pintarič, Zorka, 2021. "An improved algorithm for synthesis of heat exchanger network with a large number of uncertain parameters," Energy, Elsevier, vol. 233(C).
    7. Bohong Wang & Jiří Jaromír Klemeš & Petar Sabev Varbanov & Min Zeng, 2020. "An Extended Grid Diagram for Heat Exchanger Network Retrofit Considering Heat Exchanger Types," Energies, MDPI, vol. 13(10), pages 1-14, May.
    8. Orosz, Ákos & Friedler, Ferenc, 2020. "Multiple-solution heat exchanger network synthesis for enabling the best industrial implementation," Energy, Elsevier, vol. 208(C).
    9. Wang, Bohong & Arsenyeva, Olga & Zeng, Min & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2022. "An advanced Grid Diagram for heat exchanger network retrofit with detailed plate heat exchanger design," Energy, Elsevier, vol. 248(C).
    10. Li, Nianqi & Klemeš, Jiří Jaromír & Sunden, Bengt & Wu, Zan & Wang, Qiuwang & Zeng, Min, 2022. "Heat exchanger network synthesis considering detailed thermal-hydraulic performance: Methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Jiří Jaromír Klemeš & Petar Sabev Varbanov & Paweł Ocłoń & Hon Huin Chin, 2019. "Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies," Energies, MDPI, vol. 12(21), pages 1-32, October.
    12. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    13. Diban, Pitchaimuthu & Foo, Dominic C.Y., 2018. "Targeting and design of heating utility system for offshore platform," Energy, Elsevier, vol. 146(C), pages 98-111.
    14. Siwen Gu & Xiuna Zhuang & Chenying Li & Shuai Zhang & Jiaan Wang & Yu Zhuang, 2022. "Multi-Objective Optimal Design and Operation of Heat Exchanger Networks with Controllability Consideration," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    15. David Huber & Felix Birkelbach & René Hofmann, 2023. "HENS Unchained: MILP Implementation of Multi-Stage Utilities with Stream Splits, Variable Temperatures and Flow Capacities," Energies, MDPI, vol. 16(12), pages 1-22, June.
    16. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).
    17. Chin, Hon Huin & Wang, Bohong & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Zeng, Min & Wang, Qiu-Wang, 2020. "Long-term investment and maintenance planning for heat exchanger network retrofit," Applied Energy, Elsevier, vol. 279(C).
    18. Du, Shuai & Xu, Zhenyuan & Wang, Ruzhu & Yang, Chun, 2024. "Development of direct seawater-cooled LiBr–H2O absorption chiller and its application in industrial waste heat utilization," Energy, Elsevier, vol. 294(C).
    19. Gollangi, Raju & K, NagamalleswaraRao, 2022. "Energy, exergy analysis of conceptually designed monochloromethane production process from hydrochlorination of methanol," Energy, Elsevier, vol. 239(PA).
    20. Çetin, Gürcan & Keçebaş, Ali, 2021. "Optimization of thermodynamic performance with simulated annealing algorithm: A geothermal power plant," Renewable Energy, Elsevier, vol. 172(C), pages 968-982.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222028407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.